These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33644523)

  • 1. Complete Electrolytic Plastron Recovery in a Low Drag Superhydrophobic Surface.
    Lloyd BP; Bartlett PN; Wood RJK
    ACS Omega; 2021 Feb; 6(5):3483-3489. PubMed ID: 33644523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Driven Gas Spreading on Mesh Surfaces for Regeneration of Underwater Superhydrophobicity.
    Wang J; Liu Y
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39034615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastron Regeneration on Submerged Superhydrophobic Surfaces Using In Situ Gas Generation by Chemical Reaction.
    Panchanathan D; Rajappan A; Varanasi KK; McKinley GH
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33684-33692. PubMed ID: 30184437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction.
    Brennan JC; Geraldi NR; Morris RH; Fairhurst DJ; McHale G; Newton MI
    Sci Rep; 2015 May; 5():10267. PubMed ID: 25975704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active gas replenishment and sensing of the wetting state in a submerged superhydrophobic surface.
    Lloyd BP; Bartlett PN; Wood RJ
    Soft Matter; 2017 Feb; 13(7):1413-1419. PubMed ID: 28121004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second-Level Microgroove Convexity is Critical for Air Plastron Restoration on Immersed Hierarchical Superhydrophobic Surfaces.
    Han X; Liu J; Wang M; Upmanyu M; Wang H
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52524-52534. PubMed ID: 36373889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic Healing of Plastrons.
    Drago-González A; Fauconnier M; Karunakaran B; Wong WSY; Ras RHA; Nieminen HJ
    Adv Sci (Weinh); 2024 Jul; ():e2403028. PubMed ID: 38946620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.
    Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K
    Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces.
    Peaudecerf FJ; Landel JR; Goldstein RE; Luzzatto-Fegiz P
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7254-7259. PubMed ID: 28655848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brightness of Microtrench Superhydrophobic Surfaces and Visual Detection of Intermediate Wetting States.
    Yu N; Kiani S; Xu M; Kim CC
    Langmuir; 2021 Jan; 37(3):1206-1214. PubMed ID: 33428410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Powered Plastron Preservation and One-Step Molding of Semiactive Superhydrophobic Surfaces.
    Xu M; Liu CT; Kim CJ
    Langmuir; 2020 Jul; 36(28):8193-8198. PubMed ID: 32589845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic air layer on textured superhydrophobic surfaces.
    Vakarelski IU; Chan DY; Marston JO; Thoroddsen ST
    Langmuir; 2013 Sep; 29(35):11074-81. PubMed ID: 23919719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recoverable underwater superhydrophobicity from a fully wetted state via dynamic air spreading.
    Zhao Y; Xu Z; Gong L; Yang S; Zeng H; He C; Ge D; Yang L
    iScience; 2021 Dec; 24(12):103427. PubMed ID: 34877492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast Self-Healing Superhydrophobic Surface for Underwater Drag Reduction.
    Sun P; Feng X; Tian G; Zhang X; Chu J
    Langmuir; 2022 Sep; 38(35):10875-10885. PubMed ID: 36001007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singlet oxygen generation on porous superhydrophobic surfaces: effect of gas flow and sensitizer wetting on trapping efficiency.
    Zhao Y; Liu Y; Xu Q; Barahman M; Bartusik D; Greer A; Lyons AM
    J Phys Chem A; 2014 Nov; 118(45):10364-71. PubMed ID: 24885074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic photosensitizers. Mechanistic studies of (1)O2 generation in the plastron and solid/liquid droplet interface.
    Aebisher D; Bartusik D; Liu Y; Zhao Y; Barahman M; Xu Q; Lyons AM; Greer A
    J Am Chem Soc; 2013 Dec; 135(50):18990-8. PubMed ID: 24295210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying Frictional Drag Reduction Properties of Superhydrophobic Metal Oxide Nanostructures.
    Ko YS; Kim HJ; Ha CW; Lee C
    Langmuir; 2020 Oct; 36(40):11809-11816. PubMed ID: 32954736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metastable underwater superhydrophobicity.
    Poetes R; Holtzmann K; Franze K; Steiner U
    Phys Rev Lett; 2010 Oct; 105(16):166104. PubMed ID: 21230986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.