BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33644538)

  • 1. Displacement Mechanisms of Residual Oil Film in 2D Microchannels.
    Fan J; Liu L; Ni S; Zhao J
    ACS Omega; 2021 Feb; 6(6):4155-4160. PubMed ID: 33644538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation of laminar and turbulent displacement of residual oil film.
    Zhang Y; Barrouillet B; Skadsem HJ
    Sci Rep; 2023 Nov; 13(1):21120. PubMed ID: 38036668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic effects on residual oil distribution in flows through pillared microchannels.
    De S; Krishnan P; van der Schaaf J; Kuipers JAM; Peters EAJF; Padding JT
    J Colloid Interface Sci; 2018 Jan; 510():262-271. PubMed ID: 28950172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Micro Production Mechanism of Corner Residual Oil after Polymer Flooding.
    Sun X; Zhao M; Fan X; Zhang Y; Xu C; Wang L; Sang G
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a novel experimental technique for the measurement of residual wall layer thickness in water-oil displacement flows.
    Zhang Y; Barrouillet B; Chavan SM; Skadsem HJ
    Sci Rep; 2023 Mar; 13(1):4530. PubMed ID: 36941330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thickness of residual wetting film in liquid-liquid displacement.
    Beresnev I; Gaul W; Vigil RD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026327. PubMed ID: 21929110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Study for the Performance of Viscoelastic Fluids on Displacing Oil Based on the Fractional-Order Maxwell Model.
    Huang J; Chen L; Li S; Guo J; Li Y
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microflow Mechanism of Oil Displacement by Viscoelastic Hydrophobically Associating Water-Soluble Polymers in Enhanced Oil Recovery.
    Zhong H; Li Y; Zhang W; Yin H; Lu J; Guo D
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced displacement of a liquid pushed by a viscoelastic fluid.
    Avendano J; Pannacci N; Herzhaft B; Gateau P; Coussot P
    J Colloid Interface Sci; 2013 Nov; 410():172-80. PubMed ID: 24011558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure of film formation of viscoelastic fluid: dynamics of viscoelastic fluid in a partially filled horizontally rotating cylinder.
    Sumino Y; Shibayama H; Yamaguchi T; Kajiya T; Doi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046307. PubMed ID: 22680574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics studies of fluid/oil interfaces for improved oil recovery processes.
    de Lara LS; Michelon MF; Miranda CR
    J Phys Chem B; 2012 Dec; 116(50):14667-76. PubMed ID: 23163479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solutions of the Maxwell viscoelastic equations for displacement and stress distributions within the arterial wall.
    Hodis S; Zamir M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021914. PubMed ID: 18850872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imbibition and Oil Recovery Mechanism of Fracturing Fluids in Tight Sandstone Reservoirs.
    Gao H; Wang Y; Xie Y; Ni J; Li T; Wang C; Xue J
    ACS Omega; 2021 Jan; 6(3):1991-2000. PubMed ID: 33521439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Film and Interfacial Tensions in Emulsion and Foam Systems.
    Kim YH; Koczo K; Wasan DT
    J Colloid Interface Sci; 1997 Mar; 187(1):29-44. PubMed ID: 9245313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of deep profile control and oil displacement technologies with nanoscale polymer microspheres.
    Hua Z; Lin M; Dong Z; Li M; Zhang G; Yang J
    J Colloid Interface Sci; 2014 Jun; 424():67-74. PubMed ID: 24767500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features.
    Gomes A; Costa ALR; Cunha RL
    Colloids Surf B Biointerfaces; 2018 Apr; 164():272-280. PubMed ID: 29413606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows.
    Park HM; Lee WM
    J Colloid Interface Sci; 2008 Jan; 317(2):631-6. PubMed ID: 17935728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental validation of numerical simulations: a comparison of computational fluid dynamics and the oil film method.
    Stoiber M; Grasl C; Pirker S; Huber L; Gittler P; Schima H
    Int J Artif Organs; 2007 Apr; 30(4):363-8. PubMed ID: 17520575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-Scale Modeling of the Effect of Wettability on Two-Phase Flow Properties for Newtonian and Non-Newtonian Fluids.
    Tembely M; Alameri WS; AlSumaiti AM; Jouini MS
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.