BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33644563)

  • 1. 4-Vinylguaiacol, an Active Metabolite of Ferulic Acid by Enteric Microbiota and Probiotics, Possesses Significant Activities against Drug-Resistant Human Colorectal Cancer Cells.
    Luo Y; Wang CZ; Sawadogo R; Yuan J; Zeng J; Xu M; Tan T; Yuan CS
    ACS Omega; 2021 Feb; 6(7):4551-4561. PubMed ID: 33644563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of 4-vinylguaiacol from crude ferulic acid by Bacillus licheniformis DLF-17056.
    Sun LH; Lv SW; Yu F; Li SN; He LY
    J Biotechnol; 2018 Sep; 281():144-149. PubMed ID: 30016740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells.
    Sudhagar S; Sathya S; Anuradha R; Gokulapriya G; Geetharani Y; Lakshmi BS
    Biotechnol Lett; 2018 Feb; 40(2):257-262. PubMed ID: 29164418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the tolerance and biotransformation of ferulic acid by Klebsiella pneumoniae TD 4.7.
    Dos Santos MBC; Scarpassa JA; Monteiro DA; Ladino-Orjuela G; Da Silva R; Boscolo M; Gomes E
    Braz J Microbiol; 2021 Sep; 52(3):1181-1190. PubMed ID: 33660233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae.
    Coghe S; Benoot K; Delvaux F; Vanderhaegen B; Delvaux FR
    J Agric Food Chem; 2004 Feb; 52(3):602-8. PubMed ID: 14759156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: a review.
    Lomascolo A; Odinot E; Villeneuve P; Lecomte J
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):173. PubMed ID: 37964324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of compound K, an enteric microbiome metabolite of ginseng, in the treatment of inflammation associated colon cancer.
    Yao H; Wan JY; Zeng J; Huang WH; Sava-Segal C; Li L; Niu X; Wang Q; Wang CZ; Yuan CS
    Oncol Lett; 2018 Jun; 15(6):8339-8348. PubMed ID: 29805567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of ferulic acid to 4-vinylguaiacol by a wild and a diploid strain of Aspergillus niger.
    Baqueiro-Peña I; Rodríguez-Serrano G; González-Zamora E; Augur C; Loera O; Saucedo-Castañeda G
    Bioresour Technol; 2010 Jun; 101(12):4721-4. PubMed ID: 20153180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiproliferative activities and phenolic acid content of water and ethanolic extracts of the powdered formula of Houttuynia cordata Thunb. fermented broth and Phyllanthus emblica Linn. fruit.
    Kumnerdkhonkaen P; Saenglee S; Asgar MA; Senawong G; Khongsukwiwat K; Senawong T
    BMC Complement Altern Med; 2018 Apr; 18(1):130. PubMed ID: 29642867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel benzotriazole N-acylarylhydrazone hybrids: Design, synthesis, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and FAK inhibition.
    Kassab AE; Hassan RA
    Bioorg Chem; 2018 Oct; 80():531-544. PubMed ID: 30014921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin.
    Wang CZ; Zhang CF; Chen L; Anderson S; Lu F; Yuan CS
    Int J Oncol; 2015 Nov; 47(5):1749-58. PubMed ID: 26398706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of Ferulic Acid to 4-Vinylguaiacol by Yeasts Isolated from Frozen Concentrated Orange Juice.
    Sutherland JB; Tanner LA; Moore JD; Freeman JP; Deck J; Williams AJ
    J Food Prot; 1995 Nov; 58(11):1260-1262. PubMed ID: 31137310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.
    Lee H; Park J; Jung C; Han D; Seo J; Ahn JH; Chong Y; Hur HG
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9473-81. PubMed ID: 26059194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological Activity, Apoptotic Induction and Cell Cycle Arrest of New Hydrazonoyl Halides Derivatives.
    Mohamed MF; Hassaneen HM; Elzayat EM; El-Hallouty SM; El-Manawaty M; Saleh FM; Mohamed Y; El-Zohiry D; Fahmy G; Abdelaal N; Hassanin N; Hossam N
    Anticancer Agents Med Chem; 2019; 19(9):1141-1149. PubMed ID: 30843494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxic, Antiproliferative and Apoptotic Effects of Perillyl Alcohol and Its Biotransformation Metabolite on A549 and HepG2 Cancer Cell Lines.
    Oturanel CE; Kıran İ; Özşen Ö; Çiftçi GA; Atlı Ö
    Anticancer Agents Med Chem; 2017; 17(9):1243-1250. PubMed ID: 28044940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives.
    Hu H; Li L; Ding S
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5071-81. PubMed ID: 25547838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemo-Preventive Potential of Falcarindiol-Enriched Fraction from
    Wang J; Shao L; Rao T; Zhang W; Huang WH
    Am J Chin Med; 2019; 47(6):1381-1404. PubMed ID: 31488036
    [No Abstract]   [Full Text] [Related]  

  • 18. Secretion metabolites of probiotic yeast, Pichia kudriavzevii AS-12, induces apoptosis pathways in human colorectal cancer cell lines.
    Saber A; Alipour B; Faghfoori Z; Mousavi Jam A; Yari Khosroushahi A
    Nutr Res; 2017 May; 41():36-46. PubMed ID: 28477945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of bacillus coagulans.
    Karmakar B; Vohra RM; Nandanwar H; Sharma P; Gupta KG; Sobti RC
    J Biotechnol; 2000 Jul; 80(3):195-202. PubMed ID: 10949310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Substituted Styrene Bioproducts from Lignin and Lignocellulose Using Engineered Pseudomonas putida KT2440.
    Williamson JJ; Bahrin N; Hardiman EM; Bugg TDH
    Biotechnol J; 2020 Jul; 15(7):e1900571. PubMed ID: 32488970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.