These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 33644871)

  • 1. Encoding sound in the cochlea: from receptor potential to afferent discharge.
    Rutherford MA; von Gersdorff H; Goutman JD
    J Physiol; 2021 May; 599(10):2527-2557. PubMed ID: 33644871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Coupling between Ca
    Johnson SL; Olt J; Cho S; von Gersdorff H; Marcotti W
    J Neurosci; 2017 Mar; 37(9):2471-2484. PubMed ID: 28154149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
    Peterson AJ; Heil P
    Hear Res; 2018 Jun; 363():1-27. PubMed ID: 28987786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturation of NaV and KV Channel Topographies in the Auditory Nerve Spike Initiator before and after Developmental Onset of Hearing Function.
    Kim KX; Rutherford MA
    J Neurosci; 2016 Feb; 36(7):2111-8. PubMed ID: 26888923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of synaptic depression at the hair cell ribbon synapse that support auditory nerve function.
    Goutman JD
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9719-9724. PubMed ID: 28827351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-gated K(+) channels contributing to temporal precision at the inner hair cell-auditory afferent nerve fiber synapses in the mammalian cochlea.
    Oak MH; Yi E
    Arch Pharm Res; 2014 Jul; 37(7):821-33. PubMed ID: 24925343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea.
    Rutherford MA; Chapochnikov NM; Moser T
    J Neurosci; 2012 Apr; 32(14):4773-89. PubMed ID: 22492033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathophysiological changes in inner hair cell ribbon synapses in the ageing mammalian cochlea.
    Jeng JY; Ceriani F; Olt J; Brown SDM; Holley MC; Bowl MR; Johnson SL; Marcotti W
    J Physiol; 2020 Oct; 598(19):4339-4355. PubMed ID: 32710572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory-nerve responses in mice with noise-induced cochlear synaptopathy.
    Suthakar K; Liberman MC
    J Neurophysiol; 2021 Dec; 126(6):2027-2038. PubMed ID: 34788179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike timing in auditory-nerve fibers during spontaneous activity and phase locking.
    Heil P; Peterson AJ
    Synapse; 2017 Jan; 71(1):5-36. PubMed ID: 27466786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-Locking Requires Efficient Ca
    Cuadra AE; Hwang FJ; Burt LM; Edmonds WC; Chobany AV; Li GL
    J Neurosci; 2021 Feb; 41(8):1625-1635. PubMed ID: 33446517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation of Heterogeneity in Afferent Synapse Ultrastructure in the Mouse Cochlea.
    Payne SA; Joens MS; Chung H; Skigen N; Frank A; Gattani S; Vaughn K; Schwed A; Nester M; Bhattacharyya A; Iyer G; Davis B; Carlquist J; Patel H; Fitzpatrick JAJ; Rutherford MA
    Front Synaptic Neurosci; 2021; 13():678575. PubMed ID: 34220482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells.
    Palmer AR; Russell IJ
    Hear Res; 1986; 24(1):1-15. PubMed ID: 3759671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of the presynaptic cytomatrix protein bassoon degrades ribbon anchorage, multiquantal release, and sound encoding at the hair cell afferent synapse.
    Jing Z; Rutherford MA; Takago H; Frank T; Fejtova A; Khimich D; Moser T; Strenzke N
    J Neurosci; 2013 Mar; 33(10):4456-67. PubMed ID: 23467361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses.
    Liberman LD; Wang H; Liberman MC
    J Neurosci; 2011 Jan; 31(3):801-8. PubMed ID: 21248103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers.
    Peterson AJ; Irvine DR; Heil P
    J Neurosci; 2014 Nov; 34(45):15097-109. PubMed ID: 25378173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts.
    Chen M; von Gersdorff H
    J Neurosci; 2019 Sep; 39(37):7260-7276. PubMed ID: 31315946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term facilitation modulates size and timing of the synaptic response at the inner hair cell ribbon synapse.
    Goutman JD; Glowatzki E
    J Neurosci; 2011 Jun; 31(22):7974-81. PubMed ID: 21632919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse.
    Moser T; Neef A; Khimich D
    J Physiol; 2006 Oct; 576(Pt 1):55-62. PubMed ID: 16901948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.