These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33644949)

  • 1. Fabrication of Quasi-2D Shape-Tailored Microparticles using Wettability Contrast-Based Platforms.
    Neto MD; Stoppa A; Neto MA; Oliveira FJ; Gomes MC; Boccaccini AR; Levkin PA; Oliveira MB; Mano JF
    Adv Mater; 2021 Apr; 33(14):e2007695. PubMed ID: 33644949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability engendered templated self-assembly (WETS) for fabricating multiphasic particles.
    Kobaku SP; Kwon G; Kota AK; Karunakaran RG; Wong P; Lee DH; Tuteja A
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4075-80. PubMed ID: 25625176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning three-dimensional (3D) shapes of polymeric microparticles by geometry-driven control of mold swelling and capillarity in micromolds.
    Ganguly R; Choi Y; Lee CS; Choi CH
    J Colloid Interface Sci; 2021 Oct; 600():373-381. PubMed ID: 34023698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Fabrication of Microparticles with Complex 3D Geometries by Tunable Interfacial Deformation of Confined Polymeric Fluids in 2D Micromolds.
    Choi CH; Lee B; Kim J; Nam JO; Yi H; Lee CS
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11393-401. PubMed ID: 25920947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Photon Lithographic Patterning of DNA-Coated Single-Microparticle Surfaces.
    Huang F; Zhang J; Li T; Duan R; Xia F; Willner I
    Nano Lett; 2019 Jan; 19(1):618-625. PubMed ID: 30585496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling wetting and self-assembly dynamics by tailored hydrophobic and oleophobic surfaces.
    Miele E; Malerba M; Dipalo M; Rondanina E; Toma A; De Angelis F
    Adv Mater; 2014 Jun; 26(24):4179-83. PubMed ID: 24711259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFM and Raman study of graphene deposited on silicon surfaces nanostructured by ion beam irradiation.
    Dell'anna R; Iacob E; Tripathi M; Dalton A; BÖttger R; Pepponi G
    J Microsc; 2020 Dec; 280(3):183-193. PubMed ID: 32424808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric Microparticles Generated via Confinement-Free Fluid Instability.
    Song J; Zhang W; Wang D; Fan Y; Zhang C; Wang D; Chen L; Miao B; Cui J; Deng X
    Adv Mater; 2021 Jun; 33(22):e2007154. PubMed ID: 33891327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired steel surfaces with extreme wettability contrast.
    Her EK; Ko TJ; Lee KR; Oh KH; Moon MW
    Nanoscale; 2012 Apr; 4(9):2900-5. PubMed ID: 22456538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled Electron-Induced Fabrication of Metallic Nanostructures on 1 nm Thick Membranes.
    Preischl C; Le LH; Bilgilisoy E; Vollnhals F; Gölzhäuser A; Marbach H
    Small; 2020 Nov; 16(45):e2003947. PubMed ID: 33078580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional polymeric microparticles engineered from controllable microfluidic emulsions.
    Wang W; Zhang MJ; Chu LY
    Acc Chem Res; 2014 Feb; 47(2):373-84. PubMed ID: 24199893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Imprinting of Quasi-3D Nanophotonic Structures into Colloidal Quantum-Dot Devices.
    Tang X; Chen M; Ackerman MM; Melnychuk C; Guyot-Sionnest P
    Adv Mater; 2020 Mar; 32(9):e1906590. PubMed ID: 31957096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties.
    Liu W; Liu X; Fangteng J; Wang S; Fang L; Shen H; Xiang S; Sun H; Yang B
    Nanoscale; 2014 Nov; 6(22):13845-53. PubMed ID: 25303770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled fabrication of multicompartmental polymeric microparticles by sequential micromolding via surface-tension-induced droplet formation.
    Choi CH; Kang SM; Jin SH; Yi H; Lee CS
    Langmuir; 2015 Feb; 31(4):1328-35. PubMed ID: 25551788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrathin Shape Change Smart Materials.
    Xu W; Kwok KS; Gracias DH
    Acc Chem Res; 2018 Feb; 51(2):436-444. PubMed ID: 29359913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications.
    Zhang S; Huang J; Chen Z; Lai Y
    Small; 2017 Jan; 13(3):. PubMed ID: 27935211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.