These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 33644952)
1. Comparing different sample collection and storage methods for field-based skin microbiome research. Manus MB; Kuthyar S; Perroni-Marañón AG; de la Mora AN; Amato KR Am J Hum Biol; 2022 Jan; 34(1):e23584. PubMed ID: 33644952 [TBL] [Abstract][Full Text] [Related]
2. Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles. Bassis CM; Moore NM; Lolans K; Seekatz AM; Weinstein RA; Young VB; Hayden MK; BMC Microbiol; 2017 Mar; 17(1):78. PubMed ID: 28359329 [TBL] [Abstract][Full Text] [Related]
3. Effects of Specimen Collection Methodologies and Storage Conditions on the Short-Term Stability of Oral Microbiome Taxonomy. Luo T; Srinivasan U; Ramadugu K; Shedden KA; Neiswanger K; Trumble E; Li JJ; McNeil DW; Crout RJ; Weyant RJ; Marazita ML; Foxman B Appl Environ Microbiol; 2016 Sep; 82(18):5519-29. PubMed ID: 27371581 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the impact of different fecal storage protocols on the microbiota diversity and composition: a pilot study. Moossavi S; Engen PA; Ghanbari R; Green SJ; Naqib A; Bishehsari F; Merat S; Poustchi H; Keshavarzian A; Malekzadeh R BMC Microbiol; 2019 Jun; 19(1):145. PubMed ID: 31253096 [TBL] [Abstract][Full Text] [Related]
5. [Variations of gut microbiome composition under different preservation solutions and periods]. Duan Y; Lü N; Cai F; Zhu B Sheng Wu Gong Cheng Xue Bao; 2020 Dec; 36(12):2525-2540. PubMed ID: 33398951 [TBL] [Abstract][Full Text] [Related]
6. Reliability of a participant-friendly fecal collection method for microbiome analyses: a step towards large sample size investigation. Szopinska JW; Gresse R; van der Marel S; Boekhorst J; Lukovac S; van Swam I; Franke B; Timmerman H; Belzer C; Arias Vasquez A BMC Microbiol; 2018 Sep; 18(1):110. PubMed ID: 30189859 [TBL] [Abstract][Full Text] [Related]
7. Comparison of DNA stabilizers and storage conditions on preserving fecal microbiota profiles. Chen CC; Wu WK; Chang CM; Panyod S; Lu TP; Liou JM; Fang YJ; Chuang EY; Wu MS J Formos Med Assoc; 2020 Dec; 119(12):1791-1798. PubMed ID: 32111519 [TBL] [Abstract][Full Text] [Related]
8. Standard Sample Storage Conditions Have an Impact on Inferred Microbiome Composition and Antimicrobial Resistance Patterns. Poulsen CS; Kaas RS; Aarestrup FM; Pamp SJ Microbiol Spectr; 2021 Oct; 9(2):e0138721. PubMed ID: 34612701 [TBL] [Abstract][Full Text] [Related]
9. Epidemiological Studies of Children's Gut Microbiota: Validation of Sample Collection and Storage Methods and Microbiota Analysis of Toddlers' Feces Collected from Diapers. Tamada H; Ito Y; Ebara T; Kato S; Kaneko K; Matsuki T; Sugiura-Ogasawara M; Saitoh S; Kamijima M Nutrients; 2022 Aug; 14(16):. PubMed ID: 36014821 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of sampling and storage procedures on preserving the community structure of stool microbiota: A simple at-home toilet-paper collection method. Al KF; Bisanz JE; Gloor GB; Reid G; Burton JP J Microbiol Methods; 2018 Jan; 144():117-121. PubMed ID: 29155236 [TBL] [Abstract][Full Text] [Related]
11. Collection of non-meconium stool on fecal occult blood cards is an effective method for fecal microbiota studies in infants. Wong WSW; Clemency N; Klein E; Provenzano M; Iyer R; Niederhuber JE; Hourigan SK Microbiome; 2017 Sep; 5(1):114. PubMed ID: 28870234 [TBL] [Abstract][Full Text] [Related]
12. Effects of storage conditions on the microbiota of fecal samples collected from dairy cattle. Jaramillo-Jaramillo AS; McClure JT; Stryhn H; Tahlan K; Sanchez J PLoS One; 2024; 19(8):e0308571. PubMed ID: 39121104 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of using alternative swabs and storage solutions for paired SARS-CoV-2 detection and microbiome analysis in the hospital environment. Minich JJ; Ali F; Marotz C; Belda-Ferre P; Chiang L; Shaffer JP; Carpenter CS; McDonald D; Gilbert J; Allard SM; Allen EE; Knight R; Sweeney DA; Swafford AD Microbiome; 2021 Jan; 9(1):25. PubMed ID: 33482920 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of microbial sample collection on the skin from people in Yaoundé, Cameroon. Benderli NC; Ogai K; Lloyd YM; Arios JP; Jiyarom B; Awanakam AH; Esemu LF; Hori A; Megnekou R; Leke RGF; Kuraishi T; Okamoto S; Ekali GL Drug Discov Ther; 2019; 13(6):360-364. PubMed ID: 31956235 [TBL] [Abstract][Full Text] [Related]
15. Effects of Variation in Urine Sample Storage Conditions on 16S Urogenital Microbiome Analyses. Kumar T; Bryant M; Cantrell K; Song SJ; McDonald D; Tubb HM; Farmer S; Lukacz ES; Brubaker L; Knight R mSystems; 2023 Feb; 8(1):e0102922. PubMed ID: 36475896 [TBL] [Abstract][Full Text] [Related]
16. Collection media and delayed freezing effects on microbial composition of human stool. Flores R; Shi J; Yu G; Ma B; Ravel J; Goedert JJ; Sinha R Microbiome; 2015; 3():33. PubMed ID: 26269741 [TBL] [Abstract][Full Text] [Related]
17. Storage and handling of human faecal samples affect the gut microbiome composition: A feasibility study. Ezzy AC; Hagstrom AD; George C; Hamlin AS; Pereg L; Murphy AJ; Winter G J Microbiol Methods; 2019 Sep; 164():105668. PubMed ID: 31302202 [TBL] [Abstract][Full Text] [Related]
18. Interpersonal Variations in Gut Microbiota Profiles Supersedes the Effects of Differing Fecal Storage Conditions. Bundgaard-Nielsen C; Hagstrøm S; Sørensen S Sci Rep; 2018 Nov; 8(1):17367. PubMed ID: 30478355 [TBL] [Abstract][Full Text] [Related]