These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 33644981)
1. Molecular and biological features of Culex quinquefasciatus homozygous larvae for two cqm1 alleles that confer resistance to Lysinibacillus sphaericus larvicides. Menezes HSG; Nascimento NA; Paiva-Cavalcanti M; da Costa-Latgé SG; Genta FA; Oliveira CM; Romão TP; Silva-Filha MHN Pest Manag Sci; 2021 Jul; 77(7):3135-3144. PubMed ID: 33644981 [TBL] [Abstract][Full Text] [Related]
2. Co-selection and replacement of resistance alleles to Lysinibacillus sphaericus in a Culex quinquefasciatus colony. Chalegre KD; Tavares DA; Romão TP; de Menezes HS; Nascimento NA; de Oliveira CM; de-Melo-Neto OP; Silva-Filha MH FEBS J; 2015 Sep; 282(18):3592-602. PubMed ID: 26131741 [TBL] [Abstract][Full Text] [Related]
3. Detection of an allele conferring resistance to Bacillus sphaericus binary toxin in Culex quinquefasciatus populations by molecular screening. Chalegre KD; Romão TP; Amorim LB; Anastacio DB; de Barros RA; de Oliveira CM; Regis L; de-Melo-Neto OP; Silva-Filha MH Appl Environ Microbiol; 2009 Feb; 75(4):1044-9. PubMed ID: 19098223 [TBL] [Abstract][Full Text] [Related]
4. A new allele conferring resistance to Lysinibacillus sphaericus is detected in low frequency in Culex quinquefasciatus field populations. Menezes HS; Chalegre KD; Romão TP; Oliveira CM; de-Melo-Neto OP; Silva-Filha MH Parasit Vectors; 2016 Feb; 9():70. PubMed ID: 26846600 [TBL] [Abstract][Full Text] [Related]
5. Stability of Culex quinquefasciatus resistance to Bacillus sphaericus evaluated by molecular tools. Amorim LB; de Barros RA; Chalegre KD; de Oliveira CM; Regis LN; Silva-Filha MH Insect Biochem Mol Biol; 2010 Apr; 40(4):311-6. PubMed ID: 20211258 [TBL] [Abstract][Full Text] [Related]
6. A differential transcriptional profile by Culex quinquefasciatus larvae resistant to Lysinibacillus sphaericus IAB59 highlights genes and pathways associated with the resistance phenotype. Rezende TMT; Rezende AM; Luz Wallau G; Santos Vasconcelos CR; de-Melo-Neto OP; Silva-Filha MHNL; Romão TP Parasit Vectors; 2019 Aug; 12(1):407. PubMed ID: 31429782 [TBL] [Abstract][Full Text] [Related]
7. A second independent resistance mechanism to Bacillus sphaericus binary toxin targets its alpha-glucosidase receptor in Culex quinquefasciatus. Romão TP; de Melo Chalegre KD; Key S; Ayres CF; Fontes de Oliveira CM; de-Melo-Neto OP; Silva-Filha MH FEBS J; 2006 Apr; 273(7):1556-68. PubMed ID: 16689941 [TBL] [Abstract][Full Text] [Related]
8. Single nucleotide deletion of cqm1 gene results in the development of resistance to Bacillus sphaericus in Culex quinquefasciatus. Guo QY; Cai QX; Yan JP; Hu XM; Zheng DS; Yuan ZM J Insect Physiol; 2013 Sep; 59(9):967-73. PubMed ID: 23871751 [TBL] [Abstract][Full Text] [Related]
9. Non conserved residues between Cqm1 and Aam1 mosquito α-glucosidases are critical for the capacity of Cqm1 to bind the Binary toxin from Lysinibacillus sphaericus. Ferreira LM; Romão TP; Nascimento NA; Costa Mda C; Rezende AM; de-Melo-Neto OP; Silva-Filha MH Insect Biochem Mol Biol; 2014 Jul; 50():34-42. PubMed ID: 24746772 [TBL] [Abstract][Full Text] [Related]
10. Ultrastructural analysis of midgut cells from Culex quinquefasciatus (Diptera: Culicidae) larvae resistant to Bacillus sphaericus. de Melo JV; Vasconcelos RH; Furtado AF; Peixoto CA; Silva-Filha MH Micron; 2008 Dec; 39(8):1342-50. PubMed ID: 18346899 [TBL] [Abstract][Full Text] [Related]
11. Culex quinquefasciatus alpha-glucosidase serves as a putative receptor of the Cry48Aa toxin from Lysinibacillus sphaericus. Guo Q; Gao Y; Xing C; Niu Y; Ding L; Dai X Insect Biochem Mol Biol; 2022 Aug; 147():103799. PubMed ID: 35662624 [TBL] [Abstract][Full Text] [Related]
13. Receptor protein of Lysinibacillus sphaericus mosquito-larvicidal toxin displays amylomaltase activity. Sharma M; Gupta GD; Kumar V Insect Biochem Mol Biol; 2018 Feb; 93():37-46. PubMed ID: 29229337 [TBL] [Abstract][Full Text] [Related]
14. Novel mutations associated with resistance to Bacillus sphaericus in a polymorphic region of the Culex quinquefasciatus cqm1 gene. Chalegre KD; Romão TP; Tavares DA; Santos EM; Ferreira LM; Oliveira CM; de-Melo-Neto OP; Silva-Filha MH Appl Environ Microbiol; 2012 Sep; 78(17):6321-6. PubMed ID: 22773633 [TBL] [Abstract][Full Text] [Related]
15. A Culex quinquefasciatus strain resistant to the binary toxin from Lysinibacillus sphaericus displays altered enzyme activities and energy reserves. Menezes HSG; Costa-Latgé SG; Genta FA; Napoleão TH; Paiva PMG; Romão TP; Silva-Filha MHNL Parasit Vectors; 2023 Aug; 16(1):273. PubMed ID: 37559134 [TBL] [Abstract][Full Text] [Related]
16. The orthologue to the Cpm1/Cqm1 receptor in Aedes aegypti is expressed as a midgut GPI-anchored α-glucosidase, which does not bind to the insecticidal binary toxin. Ferreira LM; Romão TP; de-Melo-Neto OP; Silva-Filha MH Insect Biochem Mol Biol; 2010 Aug; 40(8):604-10. PubMed ID: 20685335 [TBL] [Abstract][Full Text] [Related]
17. N-glycosylation influences the catalytic activity of mosquito α-glucosidases associated with susceptibility or refractoriness to Lysinibacillus sphaericus. Nascimento NAD; Ferreira LM; Romão TP; Correia DMDC; Vasconcelos CRDS; Rezende AM; Costa SG; Genta FA; de-Melo-Neto OP; Silva-Filha MHNL Insect Biochem Mol Biol; 2017 Feb; 81():62-71. PubMed ID: 28017798 [TBL] [Abstract][Full Text] [Related]