These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 33645140)

  • 21. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.
    Pinto D; Coradin T; Laberty-Robert C
    Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm.
    Zhuang Z; Yang G; Zhuang L
    Sci Total Environ; 2022 Feb; 806(Pt 3):150713. PubMed ID: 34606863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell-a Mini Review.
    Leung DHL; Lim YS; Uma K; Pan GT; Lin JH; Chong S; Yang TC
    Appl Biochem Biotechnol; 2021 Apr; 193(4):1170-1186. PubMed ID: 33200267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular electron transfer features of Gram-positive bacteria.
    Pankratova G; Hederstedt L; Gorton L
    Anal Chim Acta; 2019 Oct; 1076():32-47. PubMed ID: 31203962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of advanced anodes in microbial fuel cells for power generation: A review.
    Cai T; Meng L; Chen G; Xi Y; Jiang N; Song J; Zheng S; Liu Y; Zhen G; Huang M
    Chemosphere; 2020 Jun; 248():125985. PubMed ID: 32032871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial Interactions in Electroactive Biofilms for Environmental Engineering Applications: A Role for Nonexoelectrogens.
    Fessler M; Madsen JS; Zhang Y
    Environ Sci Technol; 2022 Nov; 56(22):15273-15279. PubMed ID: 36223388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability.
    Xiao X; Liu QY; Li TT; Zhang F; Li WW; Zhou XT; Xu MY; Li Q; Yu HQ
    Bioresour Technol; 2017 Oct; 241():743-749. PubMed ID: 28628978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing.
    Zou L; Huang YH; Long ZE; Qiao Y
    World J Microbiol Biotechnol; 2018 Dec; 35(1):9. PubMed ID: 30569420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron Storage in Electroactive Biofilms.
    Ter Heijne A; Pereira MA; Pereira J; Sleutels T
    Trends Biotechnol; 2021 Jan; 39(1):34-42. PubMed ID: 32646618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide.
    Flexer V; Jourdin L
    Acc Chem Res; 2020 Feb; 53(2):311-321. PubMed ID: 31990521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced redox conductivity and enriched Geobacteraceae of exoelectrogenic biofilms in response to static magnetic field.
    Li C; Wang L; Liu H
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7611-7621. PubMed ID: 29923078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tailoring Surface Properties of Electrodes for Synchronous Enhanced Extracellular Electron Transfer and Enriched Exoelectrogens in Microbial Fuel Cells.
    Li Y; Liu J; Chen X; Wu J; Li N; He W; Feng Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58508-58521. PubMed ID: 34871496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biotechnological Aspects of Microbial Extracellular Electron Transfer.
    Kato S
    Microbes Environ; 2015; 30(2):133-9. PubMed ID: 26004795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells.
    Krige A; Sjöblom M; Ramser K; Christakopoulos P; Rova U
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30759821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemically active biofilms: facts and fiction. A review.
    Babauta J; Renslow R; Lewandowski Z; Beyenal H
    Biofouling; 2012; 28(8):789-812. PubMed ID: 22856464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetics, electron uptake mechanisms and limitations of electroautotrophs growing on biocathodes - A review.
    Massazza D; Robledo AJ; Rodriguez Simón CN; Busalmen JP; Bonanni S
    Bioresour Technol; 2021 Dec; 342():125893. PubMed ID: 34537530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A framework for modeling electroactive microbial biofilms performing direct electron transfer.
    Korth B; Rosa LF; Harnisch F; Picioreanu C
    Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High throughput techniques for the rapid identification of electroactive microorganisms.
    Nath D; Das S; Ghangrekar MM
    Chemosphere; 2021 Dec; 285():131489. PubMed ID: 34265713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How does electron transfer occur in microbial fuel cells?
    Aiyer KS
    World J Microbiol Biotechnol; 2020 Jan; 36(2):19. PubMed ID: 31955250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced extracellular electron transfer between Shewanella putrefaciens and carbon felt electrode modified by bio-reduced graphene oxide.
    Zhu W; Yao M; Gao H; Wen H; Zhao X; Zhang J; Bai H
    Sci Total Environ; 2019 Nov; 691():1089-1097. PubMed ID: 31466191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.