These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 33645153)
1. [Methanol dehydrogenase, a key enzyme of one-carbon metabolism: a review]. Fan L; Wang Y; Zheng P; Sun J Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):530-540. PubMed ID: 33645153 [TBL] [Abstract][Full Text] [Related]
2. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Keltjens JT; Pol A; Reimann J; Op den Camp HJ Appl Microbiol Biotechnol; 2014; 98(14):6163-83. PubMed ID: 24816778 [TBL] [Abstract][Full Text] [Related]
3. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1. Wu TY; Chen CT; Liu JT; Bogorad IW; Damoiseaux R; Liao JC Appl Microbiol Biotechnol; 2016 Jun; 100(11):4969-83. PubMed ID: 26846745 [TBL] [Abstract][Full Text] [Related]
4. XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”. Wu ML; Wessels JC; Pol A; Op den Camp HJ; Jetten MS; van Niftrik L Appl Environ Microbiol; 2015 Feb; 81(4):1442-51. PubMed ID: 25527536 [TBL] [Abstract][Full Text] [Related]
5. Biosensor-Based Directed Evolution of Methanol Dehydrogenase from Le TK; Ju SB; Lee HW; Lee JY; Oh SH; Kwon KK; Sung BH; Lee SG; Yeom SJ Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540582 [TBL] [Abstract][Full Text] [Related]
6. Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Krause SM; Johnson T; Samadhi Karunaratne Y; Fu Y; Beck DA; Chistoserdova L; Lidstrom ME Proc Natl Acad Sci U S A; 2017 Jan; 114(2):358-363. PubMed ID: 28028242 [TBL] [Abstract][Full Text] [Related]
7. Discovery and Biochemical Characterization of a Methanol Dehydrogenase From Lee JY; Park SH; Oh SH; Lee JJ; Kwon KK; Kim SJ; Choi M; Rha E; Lee H; Lee DH; Sung BH; Yeom SJ; Lee SG Front Bioeng Biotechnol; 2020; 8():67. PubMed ID: 32117944 [TBL] [Abstract][Full Text] [Related]
8. Methanol Dehydrogenases as a Key Biocatalysts for Synthetic Methylotrophy. Le TK; Lee YJ; Han GH; Yeom SJ Front Bioeng Biotechnol; 2021; 9():787791. PubMed ID: 35004648 [TBL] [Abstract][Full Text] [Related]
9. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Bennett RK; Steinberg LM; Chen W; Papoutsakis ET Curr Opin Biotechnol; 2018 Apr; 50():81-93. PubMed ID: 29216497 [TBL] [Abstract][Full Text] [Related]
10. Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. Krog A; Heggeset TM; Müller JE; Kupper CE; Schneider O; Vorholt JA; Ellingsen TE; Brautaset T PLoS One; 2013; 8(3):e59188. PubMed ID: 23527128 [TBL] [Abstract][Full Text] [Related]
11. Structure and function of the lanthanide-dependent methanol dehydrogenase XoxF from the methanotroph Methylomicrobium buryatense 5GB1C. Deng YW; Ro SY; Rosenzweig AC J Biol Inorg Chem; 2018 Oct; 23(7):1037-1047. PubMed ID: 30132076 [TBL] [Abstract][Full Text] [Related]
12. Discovery of lanthanide-dependent methylotrophy and screening methods for lanthanide-dependent methylotrophs. Tani A; Mitsui R; Nakagawa T Methods Enzymol; 2021; 650():1-18. PubMed ID: 33867018 [TBL] [Abstract][Full Text] [Related]
13. Lanthanide-Dependent Methanol and Formaldehyde Oxidation in Yanpirat P; Nakatsuji Y; Hiraga S; Fujitani Y; Izumi T; Masuda S; Mitsui R; Nakagawa T; Tani A Microorganisms; 2020 May; 8(6):. PubMed ID: 32486139 [TBL] [Abstract][Full Text] [Related]
14. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs. Gregory GJ; Bennett RK; Papoutsakis ET Metab Eng; 2022 May; 71():99-116. PubMed ID: 34547453 [TBL] [Abstract][Full Text] [Related]
15. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Pol A; Barends TR; Dietl A; Khadem AF; Eygensteyn J; Jetten MS; Op den Camp HJ Environ Microbiol; 2014 Jan; 16(1):255-64. PubMed ID: 24034209 [TBL] [Abstract][Full Text] [Related]
16. Development of a formaldehyde biosensor with application to synthetic methylotrophy. Woolston BM; Roth T; Kohale I; Liu DR; Stephanopoulos G Biotechnol Bioeng; 2018 Jan; 115(1):206-215. PubMed ID: 28921510 [TBL] [Abstract][Full Text] [Related]
17. Mixing and matching methylotrophic enzymes to design a novel methanol utilization pathway in E. coli. De Simone A; Vicente CM; Peiro C; Gales L; Bellvert F; Enjalbert B; Heux S Metab Eng; 2020 Sep; 61():315-325. PubMed ID: 32687991 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of methanol by facultative and obligate methylotrophs. Michalik J; Raczyńska-Bojanowska K Acta Biochim Pol; 1976; 23(4):375-86. PubMed ID: 827889 [TBL] [Abstract][Full Text] [Related]
19. Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production. Tuyishime P; Sinumvayo JP World J Microbiol Biotechnol; 2020 Jul; 36(8):118. PubMed ID: 32681457 [TBL] [Abstract][Full Text] [Related]
20. Improving the Methanol Tolerance of an Bennett RK; Gregory GJ; Gonzalez JE; Har JRG; Antoniewicz MR; Papoutsakis ET Front Microbiol; 2021; 12():638426. PubMed ID: 33643274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]