BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 33645164)

  • 21. Nickel-Doped Microfluidic Chip for Rapid and Efficient Immunomagnetic Separation and Detection of Breast Cancer Cell-Derived Exosomes.
    Fang H; Liu M; Jiang W
    Appl Biochem Biotechnol; 2023 May; 195(5):3109-3121. PubMed ID: 36542270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip.
    Zhang P; Zhou X; He M; Shang Y; Tetlow AL; Godwin AK; Zeng Y
    Nat Biomed Eng; 2019 Jun; 3(6):438-451. PubMed ID: 31123323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes.
    Gallo A; Tandon M; Alevizos I; Illei GG
    PLoS One; 2012; 7(3):e30679. PubMed ID: 22427800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches.
    Zarovni N; Corrado A; Guazzi P; Zocco D; Lari E; Radano G; Muhhina J; Fondelli C; Gavrilova J; Chiesi A
    Methods; 2015 Oct; 87():46-58. PubMed ID: 26044649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of a cleavable linker chemistry-based
    Zhou S; Li Z; Li Y; Wang X; Deng K
    Anal Methods; 2023 Dec; 15(48):6738-6749. PubMed ID: 38054244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urine Exosome Isolation and Characterization.
    Street JM; Koritzinsky EH; Glispie DM; Yuen PST
    Methods Mol Biol; 2017; 1641():413-423. PubMed ID: 28748478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and Profiling of MicroRNA-containing Exosomes from Human Bile.
    Li L; Piontek KB; Kumbhari V; Ishida M; Selaru FM
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27341293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An immuno-magnetophoresis-based microfluidic chip to isolate and detect HER2-Positive cancer-derived exosomes via multiple separation.
    Mun B; Kim R; Jeong H; Kang B; Kim J; Son HY; Lim J; Rho HW; Lim EK; Haam S
    Biosens Bioelectron; 2023 Nov; 239():115592. PubMed ID: 37603987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits.
    Shirejini SZ; Inci F
    Biotechnol Adv; 2022; 54():107814. PubMed ID: 34389465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Progress in Microfluidics-Based Exosome Separation and Detection Technologies for Diagnostic Applications.
    Lin S; Yu Z; Chen D; Wang Z; Miao J; Li Q; Zhang D; Song J; Cui D
    Small; 2020 Mar; 16(9):e1903916. PubMed ID: 31663295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes.
    Kanwar SS; Dunlay CJ; Simeone DM; Nagrath S
    Lab Chip; 2014 Jun; 14(11):1891-900. PubMed ID: 24722878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a rinsing separation method for exosome isolation and comparison to conventional methods.
    Cheng H; Fang H; Xu RD; Fu MQ; Chen L; Song XY; Qian JY; Zou YZ; Ma JY; Ge JB
    Eur Rev Med Pharmacol Sci; 2019 Jun; 23(12):5074-5083. PubMed ID: 31298362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine.
    Cheng L; Sun X; Scicluna BJ; Coleman BM; Hill AF
    Kidney Int; 2014 Aug; 86(2):433-44. PubMed ID: 24352158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic-Based Exosome Analysis for Liquid Biopsy.
    Lin B; Lei Y; Wang J; Zhu L; Wu Y; Zhang H; Wu L; Zhang P; Yang C
    Small Methods; 2021 Mar; 5(3):e2001131. PubMed ID: 34927834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods.
    Baranyai T; Herczeg K; Onódi Z; Voszka I; Módos K; Marton N; Nagy G; Mäger I; Wood MJ; El Andaloussi S; Pálinkás Z; Kumar V; Nagy P; Kittel Á; Buzás EI; Ferdinandy P; Giricz Z
    PLoS One; 2015; 10(12):e0145686. PubMed ID: 26690353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrative microfluidic device for isolation and ultrasensitive detection of lung cancer-specific exosomes from patient urine.
    Yang Q; Cheng L; Hu L; Lou D; Zhang T; Li J; Zhu Q; Liu F
    Biosens Bioelectron; 2020 Sep; 163():112290. PubMed ID: 32568696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exosome isolation from distinct biofluids using precipitation and column-based approaches.
    Soares Martins T; Catita J; Martins Rosa I; A B da Cruz E Silva O; Henriques AG
    PLoS One; 2018; 13(6):e0198820. PubMed ID: 29889903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic-Based Microfluidic Device for On-Chip Isolation and Detection of Tumor-Derived Exosomes.
    Xu H; Liao C; Zuo P; Liu Z; Ye BC
    Anal Chem; 2018 Nov; 90(22):13451-13458. PubMed ID: 30234974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated microfluidic-SERS for exosome biomarker profiling and osteosarcoma diagnosis.
    Han Z; Peng X; Yang Y; Yi J; Zhao D; Bao Q; Long S; Yu SX; Xu XX; Liu B; Liu YJ; Shen Y; Qiao L
    Biosens Bioelectron; 2022 Dec; 217():114709. PubMed ID: 36115123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Microfluidic Chip Enables Isolation of Exosomes and Establishment of Their Protein Profiles and Associated Signaling Pathways in Ovarian Cancer.
    Dorayappan KDP; Gardner ML; Hisey CL; Zingarelli RA; Smith BQ; Lightfoot MDS; Gogna R; Flannery MM; Hays J; Hansford DJ; Freitas MA; Yu L; Cohn DE; Selvendiran K
    Cancer Res; 2019 Jul; 79(13):3503-3513. PubMed ID: 31097475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.