BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33645552)

  • 1. Isolation and Time-Lapse Imaging of Primary Mouse Embryonic Palatal Mesenchyme Cells to Analyze Collective Movement Attributes.
    Goering JP; Isai DG; Czirok A; Saadi I
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33645552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPECC1L-deficient primary mouse embryonic palatal mesenchyme cells show speed and directionality defects.
    Goering JP; Isai DG; Hall EG; Wilson NR; Kosa E; Wenger LW; Umar Z; Yousaf A; Czirok A; Saadi I
    Sci Rep; 2021 Jan; 11(1):1452. PubMed ID: 33446878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyaluronic acid is required for palatal shelf movement and its interaction with the tongue during palatal shelf elevation.
    Yonemitsu MA; Lin TY; Yu K
    Dev Biol; 2020 Jan; 457(1):57-68. PubMed ID: 31526805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal cell remodeling during mouse secondary palate reorientation.
    Jin JZ; Tan M; Warner DR; Darling DS; Higashi Y; Gridley T; Ding J
    Dev Dyn; 2010 Jul; 239(7):2110-7. PubMed ID: 20549719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenic microenvironment affects palatal development through glycolysis.
    Peng X; Chen J; Wang Y; Wang X; Zhao X; Zheng X; Wang Z; Yuan D; Du J
    Differentiation; 2023; 133():1-11. PubMed ID: 37267667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse embryonic palatal mesenchymal cells maintain stemness through the PTEN-Akt-mTOR autophagic pathway.
    Shi L; Li B; Zhang B; Zhen C; Zhou J; Tang S
    Stem Cell Res Ther; 2019 Jul; 10(1):217. PubMed ID: 31358051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Analysis of Palatal Shelf Elevation During Secondary Palate Formation.
    Yu K; Yonemitsu MA
    Anat Rec (Hoboken); 2019 Sep; 302(9):1594-1604. PubMed ID: 30730607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping cellular processes in the mesenchyme during palatal development in the absence of Tbx1 reveals complex proliferation changes and perturbed cell packing and polarity.
    Brock LJ; Economou AD; Cobourne MT; Green JB
    J Anat; 2016 Mar; 228(3):464-73. PubMed ID: 26689739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirement of Hyaluronan Synthase-2 in Craniofacial and Palate Development.
    Lan Y; Qin C; Jiang R
    J Dent Res; 2019 Nov; 98(12):1367-1375. PubMed ID: 31509714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesenchymal fibroblast growth factor receptor signaling regulates palatal shelf elevation during secondary palate formation.
    Yu K; Karuppaiah K; Ornitz DM
    Dev Dyn; 2015 Nov; 244(11):1427-38. PubMed ID: 26250517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal Remodeling during Palatal Shelf Elevation Revealed by Extracellular Matrix and F-Actin Expression Patterns.
    Chiquet M; Blumer S; Angelini M; Mitsiadis TA; Katsaros C
    Front Physiol; 2016; 7():392. PubMed ID: 27656150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ablation of the Sox11 Gene Results in Clefting of the Secondary Palate Resembling the Pierre Robin Sequence.
    Huang H; Yang X; Bao M; Cao H; Miao X; Zhang X; Gan L; Qiu M; Zhang Z
    J Biol Chem; 2016 Mar; 291(13):7107-18. PubMed ID: 26826126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rescue of an in vitro palate nonfusion model using interposed embryonic mesenchyme.
    Erfani S; Maldonado TS; Crisera CA; Warren SM; Peled ZM; Longaker MT
    Plast Reconstr Surg; 2002 Jun; 109(7):2363-72. PubMed ID: 12045564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal and spatial expression of Hoxa-2 during murine palatogenesis.
    Nazarali A; Puthucode R; Leung V; Wolf L; Hao Z; Yeung J
    Cell Mol Neurobiol; 2000 Jun; 20(3):269-90. PubMed ID: 10789828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation.
    Almaidhan A; Cesario J; Landin Malt A; Zhao Y; Sharma N; Choi V; Jeong J
    BMC Dev Biol; 2014 Jan; 14():3. PubMed ID: 24433583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal changes associated with retinoic acid induced cleft palate in CD-1 mice.
    Degitz SJ; Francis BM; Foley GL
    J Craniofac Genet Dev Biol; 1998; 18(2):88-99. PubMed ID: 9672841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wnt6 influences the viability of mouse embryonic palatal mesenchymal cells via the β-catenin pathway.
    Jiang Z; Pan L; Chen X; Chen Z; Xu D
    Exp Ther Med; 2017 Dec; 14(6):5339-5344. PubMed ID: 29285061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro mouse model of cleft palate: defining a critical intershelf distance necessary for palatal clefting.
    Erfani S; Maldonado TS; Crisera CA; Warren SM; Lee S; Longaker MT
    Plast Reconstr Surg; 2001 Aug; 108(2):403-10. PubMed ID: 11496182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique mouse strain expressing Cre recombinase for tissue-specific analysis of gene function in palate and kidney development.
    Lan Y; Wang Q; Ovitt CE; Jiang R
    Genesis; 2007 Oct; 45(10):618-24. PubMed ID: 17941042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDGF-C controls proliferation and is down-regulated by retinoic acid in mouse embryonic palatal mesenchymal cells.
    Han J; Xiao Y; Lin J; Li Y
    Birth Defects Res B Dev Reprod Toxicol; 2006 Oct; 77(5):438-44. PubMed ID: 17066417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.