These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 33645907)
1. Spectroscopic Evidence of Hyponitrite Radical Intermediate in NO Disproportionation at a MOF-Supported Mononuclear Copper Site. Sun C; Yang L; Ortuño MA; Wright AM; Chen T; Head AR; López N; Dincă M Angew Chem Int Ed Engl; 2021 Mar; 60(14):7845-7850. PubMed ID: 33645907 [TBL] [Abstract][Full Text] [Related]
2. A trans-Hyponitrite Intermediate in the Reductive Coupling and Deoxygenation of Nitric Oxide by a Tricopper-Lewis Acid Complex. Lionetti D; de Ruiter G; Agapie T J Am Chem Soc; 2016 Apr; 138(15):5008-11. PubMed ID: 27028157 [TBL] [Abstract][Full Text] [Related]
3. NO disproportionation at a mononuclear site-isolated Fe(2+) center in Fe(2+)-MOF-5. Brozek CK; Miller JT; Stoian SA; Dincă M J Am Chem Soc; 2015 Jun; 137(23):7495-501. PubMed ID: 25988850 [TBL] [Abstract][Full Text] [Related]
4. Reductive Nitric Oxide Coupling at a Dinickel Core: Isolation of a Key cis-Hyponitrite Intermediate en route to N Ferretti E; Dechert S; Demeshko S; Holthausen MC; Meyer F Angew Chem Int Ed Engl; 2019 Feb; 58(6):1705-1709. PubMed ID: 30516873 [TBL] [Abstract][Full Text] [Related]
5. Reductive Coupling of Nitric Oxide by Cu(I): Stepwise Formation of Mono- and Dinitrosyl Species Bhadra M; Albert T; Franke A; Josef V; Ivanović-Burmazović I; Swart M; Moënne-Loccoz P; Karlin KD J Am Chem Soc; 2023 Feb; 145(4):2230-2242. PubMed ID: 36652374 [TBL] [Abstract][Full Text] [Related]
6. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides. Hematian S; Garcia-Bosch I; Karlin KD Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814 [TBL] [Abstract][Full Text] [Related]
7. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis. Drake T; Ji P; Lin W Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and Structural Characterization of a Non-Heme Iron Hyponitrite Complex. Lengel MO; Dong HT; Lehnert N Angew Chem Int Ed Engl; 2024 Dec; 63(49):e202409700. PubMed ID: 39254923 [TBL] [Abstract][Full Text] [Related]
9. Computational Insights into the Mechanism of Nitric Oxide Generation from Rousseau BJG; Soudackov AV; Tuttle RR; Reynolds MM; Finke RG; Hammes-Schiffer S J Am Chem Soc; 2023 May; 145(18):10285-10294. PubMed ID: 37126424 [TBL] [Abstract][Full Text] [Related]
10. Reduction of Nitrogen Oxides by Hydrogen with Rhodium(I)-Platinum(II) Olefin Complexes as Catalysts. Jurt P; Abels AS; Gamboa-Carballo JJ; Fernández I; Le Corre G; Aebli M; Baker MG; Eiler F; Müller F; Wörle M; Verel R; Gauthier S; Trincado M; Gianetti TL; Grützmacher H Angew Chem Int Ed Engl; 2021 Nov; 60(48):25372-25380. PubMed ID: 34510678 [TBL] [Abstract][Full Text] [Related]
11. Sequentially Regulating the Structural Transformation of Copper Metal-Organic Frameworks (Cu-MOFs) for Controlling Site-Selective Reaction. Qin Q; Wang D; Shao Z; Zhang Y; Zhang Q; Li X; Huang C; Mi L ACS Appl Mater Interfaces; 2022 Aug; 14(32):36845-36854. PubMed ID: 35938901 [TBL] [Abstract][Full Text] [Related]
13. Can Reduction of NO to N Blomberg MR Biochemistry; 2017 Jan; 56(1):120-131. PubMed ID: 27959492 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide - A comparison between nitric oxide reductase and cytochrome c oxidase. Blomberg MRA; Ädelroth P Biochim Biophys Acta Bioenerg; 2018 Nov; 1859(11):1223-1234. PubMed ID: 30248312 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the bridged hyponitrite complex {[Fe(OEP)](2)(μ-N(2)O(2))}: reactivity of hyponitrite complexes and biological relevance. Berto TC; Xu N; Lee SR; McNeil AJ; Alp EE; Zhao J; Richter-Addo GB; Lehnert N Inorg Chem; 2014 Jul; 53(13):6398-414. PubMed ID: 24971721 [TBL] [Abstract][Full Text] [Related]
16. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides. Paolucci C; Di Iorio JR; Schneider WF; Gounder R Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332 [TBL] [Abstract][Full Text] [Related]
17. Binuclear Cu(A) Formation in Biosynthetic Models of Cu(A) in Azurin Proceeds via a Novel Cu(Cys)2His Mononuclear Copper Intermediate. Chakraborty S; Polen MJ; Chacón KN; Wilson TD; Yu Y; Reed J; Nilges MJ; Blackburn NJ; Lu Y Biochemistry; 2015 Oct; 54(39):6071-81. PubMed ID: 26352296 [TBL] [Abstract][Full Text] [Related]
18. A theoretical study of nitric oxide adsorption and dissociation on copper-exchanged zeolites SSZ-13 and SAPO-34: the impact of framework acid-base properties. Uzunova EL; Mikosch H Phys Chem Chem Phys; 2016 Apr; 18(16):11233-42. PubMed ID: 27053488 [TBL] [Abstract][Full Text] [Related]
19. A computational study of the effect of the metal organic framework environment on the release of chemically stored nitric oxide. Li T; Taylor-Edinbyrd K; Kumar R Phys Chem Chem Phys; 2015 Sep; 17(36):23403-12. PubMed ID: 26292051 [TBL] [Abstract][Full Text] [Related]
20. Unveiling the CO Oxidation Mechanism over a Molecularly Defined Copper Single-Atom Catalyst Supported on a Metal-Organic Framework. Abdel-Mageed AM; Rungtaweevoranit B; Impeng S; Bansmann J; Rabeah J; Chen S; Häring T; Namuangrak S; Faungnawakij K; Brückner A; Behm RJ Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202301920. PubMed ID: 37074965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]