These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33646229)

  • 1. Strain-mediated bandgap engineering of straight and bent semiconductor nanowires.
    Lim B; Cui XY; Ringer SP
    Phys Chem Chem Phys; 2021 Mar; 23(9):5407-5414. PubMed ID: 33646229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bent Polytypic ZnSe and CdSe Nanowires Probed by Photoluminescence.
    Kim Y; Im HS; Park K; Kim J; Ahn JP; Yoo SJ; Kim JG; Park J
    Small; 2017 May; 13(19):. PubMed ID: 28296175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires.
    Schmidt TM; Miwa RH
    Nanotechnology; 2009 May; 20(21):215202. PubMed ID: 19423926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain Mapping and Raman Spectroscopy of Bent GaP and GaAs Nanowires.
    Im HS; Park K; Kim J; Kim D; Lee J; Lee JA; Park J; Ahn JP
    ACS Omega; 2018 Mar; 3(3):3129-3135. PubMed ID: 31458573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous Photoelectrical Properties through Strain Engineering Based on a Single Bent InAsSb Nanowire.
    Yao X; Zhang X; Sun Q; Wei D; Chen P; Zou J
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5691-5698. PubMed ID: 33470805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable catalytic alloying eliminates stacking faults in compound semiconductor nanowires.
    Heo H; Kang K; Lee D; Jin LH; Back HJ; Hwang I; Kim M; Lee HS; Lee BJ; Yi GC; Cho YH; Jo MH
    Nano Lett; 2012 Feb; 12(2):855-60. PubMed ID: 22268369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires.
    Greil J; Assali S; Isono Y; Belabbes A; Bechstedt F; Valega Mackenzie FO; Silov AY; Bakkers EP; Haverkort JE
    Nano Lett; 2016 Jun; 16(6):3703-9. PubMed ID: 27175743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies.
    Dobrovolsky A; Persson PO; Sukrittanon S; Kuang Y; Tu CW; Chen WM; Buyanova IA
    Nano Lett; 2015 Jun; 15(6):4052-8. PubMed ID: 25988267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitaxial growth of crystal phase quantum dots in III-V semiconductor nanowires.
    Lozano MS; Gómez VJ
    Nanoscale Adv; 2023 Mar; 5(7):1890-1909. PubMed ID: 36998660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires.
    Rosini M; Magri R
    ACS Nano; 2010 Oct; 4(10):6021-31. PubMed ID: 20853868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-induced large exciton energy shifts in buckled CdS nanowires.
    Sun L; Kim DH; Oh KH; Agarwal R
    Nano Lett; 2013 Aug; 13(8):3836-42. PubMed ID: 23899018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth, structural and optical characterization of wurtzite GaP nanowires.
    Maliakkal CB; Gokhale M; Parmar J; Bapat RD; Chalke BA; Ghosh S; Bhattacharya A
    Nanotechnology; 2019 Jun; 30(25):254002. PubMed ID: 30802882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic Interface Dynamics in Sn-Catalyzed Growth of Wurtzite and Zinc-Blende ZnO Nanowires.
    Jia S; Hu S; Zheng H; Wei Y; Meng S; Sheng H; Liu H; Zhou S; Zhao D; Wang J
    Nano Lett; 2018 Jul; 18(7):4095-4099. PubMed ID: 29879357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling electronic band structure of narrow-bandgap p-n nanojunctions in heterostructured nanowires.
    Zamani RR; Hage FS; Eljarrat A; Namazi L; Ramasse QM; Dick KA
    Phys Chem Chem Phys; 2021 Nov; 23(44):25019-25023. PubMed ID: 34730587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polygermanes: bandgap engineering via tensile strain and side-chain substitution.
    Fa W; Zeng XC
    Chem Commun (Camb); 2014 Aug; 50(65):9126-9. PubMed ID: 24990582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid density functional theory studies of AlN and GaN under uniaxial strain.
    Qin L; Duan Y; Shi H; Shi L; Tang G
    J Phys Condens Matter; 2013 Jan; 25(4):045801. PubMed ID: 23248170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bandgap engineering and manipulating electronic and optical properties of ZnO nanowires by uniaxial strain.
    Shao RW; Zheng K; Wei B; Zhang YF; Li YJ; Han XD; Zhang Z; Zou J
    Nanoscale; 2014 May; 6(9):4936-41. PubMed ID: 24676099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent bandgap modulation of ZnO nanowires by tensile strain.
    Wei B; Zheng K; Ji Y; Zhang Y; Zhang Z; Han X
    Nano Lett; 2012 Sep; 12(9):4595-9. PubMed ID: 22889268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-Energy Release in Bent Semiconductor Nanowires Occurring by Polygonization or Nanocrack Formation.
    Sun Z; Huang C; Guo J; Dong JT; Klie RF; Lauhon LJ; Seidman DN
    ACS Nano; 2019 Mar; 13(3):3730-3738. PubMed ID: 30807693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray diffraction reveals the amount of strain and homogeneity of extremely bent single nanowires.
    Davtyan A; Kriegner D; Holý V; AlHassan A; Lewis RB; McDermott S; Geelhaar L; Bahrami D; Anjum T; Ren Z; Richter C; Novikov D; Müller J; Butz B; Pietsch U
    J Appl Crystallogr; 2020 Oct; 53(Pt 5):1310-1320. PubMed ID: 33117111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.