These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 33646377)
1. Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains. Abbaszadeh-Dahaji P; Atajan FA; Omidvari M; Tahan V; Kariman K Curr Microbiol; 2021 Apr; 78(4):1335-1343. PubMed ID: 33646377 [TBL] [Abstract][Full Text] [Related]
2. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
3. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus. Kumar A; Tripti ; Voropaeva O; Maleva M; Panikovskaya K; Borisova G; Rajkumar M; Bruno LB Chemosphere; 2021 Mar; 266():128983. PubMed ID: 33272662 [TBL] [Abstract][Full Text] [Related]
4. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Kumar A; Tripti ; Maleva M; Bruno LB; Rajkumar M Chemosphere; 2021 Aug; 276():130038. PubMed ID: 33690033 [TBL] [Abstract][Full Text] [Related]
5. Copper-resistant bacteria enhance plant growth and copper phytoextraction. Yang R; Luo C; Chen Y; Wang G; Xu Y; Shen Z Int J Phytoremediation; 2013; 15(6):573-84. PubMed ID: 23819298 [TBL] [Abstract][Full Text] [Related]
6. Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Majeed A; Kaleem Abbasi M; Hameed S; Yasmin S; Hanif MK; Naqqash T; Imran A Microbiol Res; 2018 Nov; 216():56-69. PubMed ID: 30269857 [TBL] [Abstract][Full Text] [Related]
7. Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Moreira H; Pereira SI; Marques AP; Rangel AO; Castro PM Environ Sci Pollut Res Int; 2016 Apr; 23(7):6940-50. PubMed ID: 26676544 [TBL] [Abstract][Full Text] [Related]
9. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Saleem M; Asghar HN; Zahir ZA; Shahid M Chemosphere; 2018 Mar; 195():606-614. PubMed ID: 29278850 [TBL] [Abstract][Full Text] [Related]
10. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Hassan W; Bano R; Bashir F; David J Environ Sci Pollut Res Int; 2014 Sep; 21(18):10983-96. PubMed ID: 24888619 [TBL] [Abstract][Full Text] [Related]
11. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ju W; Liu L; Fang L; Cui Y; Duan C; Wu H Ecotoxicol Environ Saf; 2019 Jan; 167():218-226. PubMed ID: 30342354 [TBL] [Abstract][Full Text] [Related]
12. Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant enzymes activity. Yasmeen T; Ahmad A; Arif MS; Mubin M; Rehman K; Shahzad SM; Iqbal S; Rizwan M; Ali S; Alyemeni MN; Wijaya L Plant Physiol Biochem; 2020 Nov; 156():242-256. PubMed ID: 32979797 [TBL] [Abstract][Full Text] [Related]
13. Role of PGPR on the physiology of sunflower irrigated with produced water containing high total dissolved solids (TDS) and its residual effects on soil fertility. Urooj N; Bano A; Riaz A Int J Phytoremediation; 2022; 24(6):567-579. PubMed ID: 34505549 [TBL] [Abstract][Full Text] [Related]
14. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Rizvi A; Khan MS Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647 [TBL] [Abstract][Full Text] [Related]
15. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. Li K; Ramakrishna W J Hazard Mater; 2011 May; 189(1-2):531-9. PubMed ID: 21420236 [TBL] [Abstract][Full Text] [Related]
16. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Islam F; Yasmeen T; Ali Q; Ali S; Arif MS; Hussain S; Rizvi H Ecotoxicol Environ Saf; 2014 Jun; 104():285-93. PubMed ID: 24726941 [TBL] [Abstract][Full Text] [Related]
17. Synergistic application of Pseudomonas strains and compost mitigates lead (Pb) stress in sunflower (Helianthus annuus L.) via improved nutrient uptake, antioxidant defense and physiology. Ayub A; Shabaan M; Malik M; Asghar HN; Zulfiqar U; Ejaz M; Alarjani KM; Al Farraj DA Ecotoxicol Environ Saf; 2024 Apr; 274():116194. PubMed ID: 38479312 [TBL] [Abstract][Full Text] [Related]
18. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize ( Pereira SIA; Abreu D; Moreira H; Vega A; Castro PML Heliyon; 2020 Oct; 6(10):e05106. PubMed ID: 33083600 [TBL] [Abstract][Full Text] [Related]
19. Intercropping with sunflower and inoculation with arbuscular mycorrhizal fungi promotes growth of garlic chive in metal-contaminated soil at a WEEE-recycling site. Zhang Y; Hu J; Bai J; Qin H; Wang J; Wang J; Lin X Ecotoxicol Environ Saf; 2019 Jan; 167():376-384. PubMed ID: 30366271 [TBL] [Abstract][Full Text] [Related]
20. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions. Kuan KB; Othman R; Abdul Rahim K; Shamsuddin ZH PLoS One; 2016; 11(3):e0152478. PubMed ID: 27011317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]