These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33646740)

  • 1. Self-Assembled Hexagonal Superparamagnetic Cone Structures for Fabrication of Cell Cluster Arrays.
    Chen Y; Hu Z; Zhao D; Zhou K; Huang Z; Zhao W; Yang X; Gao C; Cao Y; Hsu Y; Chang W; Wei Z; Liu X
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10667-10673. PubMed ID: 33646740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shaping the Assembly of Superparamagnetic Nanoparticles.
    Hu M; Butt HJ; Landfester K; Bannwarth MB; Wooh S; Thérien-Aubin H
    ACS Nano; 2019 Mar; 13(3):3015-3022. PubMed ID: 30802035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles).
    Wu VM; Huynh E; Tang S; Uskoković V
    Acta Biomater; 2019 Apr; 88():422-447. PubMed ID: 30711662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Ferrofluid with Surface Modified Nanoparticles for Magnetic Hyperthermia and High ROS Production.
    Cervantes O; Lopez ZDR; Casillas N; Knauth P; Checa N; Cholico FA; Hernandez-Gutiérrez R; Quintero LH; Paz JA; Cano ME
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic assembly route to colloidal responsive photonic nanostructures.
    He L; Wang M; Ge J; Yin Y
    Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface.
    Zhang J; Wang X; Wang Z; Pan S; Yi B; Ai L; Gao J; Mugele F; Yao X
    Nat Commun; 2021 Dec; 12(1):7136. PubMed ID: 34880250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large scale monodisperse hexagonal arrays of superparamagnetic iron oxides nanodots: a facile block copolymer inclusion method.
    Ghoshal T; Maity T; Godsell JF; Roy S; Morris MA
    Adv Mater; 2012 May; 24(18):2390-7. PubMed ID: 22488935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magneto-induced stress enhancing effect in a colloidal suspension of paramagnetic and superparamagnetic particles dispersed in a ferrofluid medium.
    Liu T; Gong X; Xu Y; Xuan S
    Soft Matter; 2014 Feb; 10(6):813-8. PubMed ID: 24837318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronous magnetic control of water droplets in bulk ferrofluid.
    Katsikis G; Breant A; Rinberg A; Prakash M
    Soft Matter; 2018 Jan; 14(5):681-692. PubMed ID: 29205244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropattern array with gradient size (µPAGS) plastic surfaces fabricated by PDMS (polydimethylsiloxane) mold-based hot embossing technique for investigation of cell-surface interaction.
    Choi MJ; Park JY; Cha KJ; Rhie JW; Cho DW; Kim DS
    Biofabrication; 2012 Dec; 4(4):045006. PubMed ID: 23075468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of size polydispersity on magnetic field tunable structures in magnetic nanofluids containing superparamagnetic nanoparticles.
    Mohapatra DK; Camp PJ; Philip J
    Nanoscale Adv; 2021 Jun; 3(12):3573-3592. PubMed ID: 36133709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Transportation of Superparamagnetic Droplets on a Magnetic Gradient Slippery Surface with On/Off Sliding Controllability.
    Hu D; Lai H; Liu Y; Luo X; Song Y; Zhang D; Fan Z; Xie Z; Cheng Z
    Chemphyschem; 2022 Nov; 23(22):e202200321. PubMed ID: 36047977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelasticity of dynamically self-assembled paramagnetic colloidal clusters.
    Tierno P; Muruganathan R; Fischer TM
    Phys Rev Lett; 2007 Jan; 98(2):028301. PubMed ID: 17358653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations of the Static Contact Angle of Ferrofluid Droplets on Solid Horizontal Surfaces in External Uniform Magnetic Fields.
    Edalatpour M; Sommers AD; Eid KF
    Langmuir; 2020 Jun; 36(22):6314-6322. PubMed ID: 31257887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating two-dimensional non-close-packed colloidal crystal arrays by deformable soft lithography.
    Li X; Wang T; Zhang J; Yan X; Zhang X; Zhu D; Li W; Zhang X; Yang B
    Langmuir; 2010 Feb; 26(4):2930-6. PubMed ID: 19715332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles.
    Narayanan TN; Mary AP; Swalih PK; Kumar DS; Makarov D; Albrecht M; Puthumana J; Anas A; Anantharaman MR
    J Nanosci Nanotechnol; 2011 Mar; 11(3):1958-67. PubMed ID: 21449334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles.
    Heinrich D; Goñi AR; Osán TM; Cerioni LM; Smessaert A; Klapp SH; Faraudo J; Pusiol DJ; Thomsen C
    Soft Matter; 2015 Oct; 11(38):7606-16. PubMed ID: 26291429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic Field-Driven Deformation, Attraction, and Coalescence of Nonmagnetic Aqueous Droplets in an Oil-Based Ferrofluid.
    Rigoni C; Fresnais J; Talbot D; Massart R; Perzynski R; Bacri JC; Abou-Hassan A
    Langmuir; 2020 May; 36(18):5048-5057. PubMed ID: 32302141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel.
    Kim KS; Park JK
    Lab Chip; 2005 Jun; 5(6):657-64. PubMed ID: 15915258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI Tracking of Dendritic Cells Loaded with Superparamagnetic Iron Oxide Nanoparticles.
    Zhu W; Xu Y; Jin R; Wu C; Ai H
    Methods Mol Biol; 2020; 2126():107-116. PubMed ID: 32112383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.