These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33647056)

  • 21. Effects on meat quality of the use of clenbuterol in veal calves.
    Geesink GH; Smulders FJ; van Laack HL; van der Kolk JH; Wensing T; Breukink HJ
    J Anim Sci; 1993 May; 71(5):1161-70. PubMed ID: 8505249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative phosphoproteomic analysis of ovine muscle with different postmortem glycolytic rates.
    Chen L; Li Z; Everaert N; Lametsch R; Zhang D
    Food Chem; 2019 May; 280():203-209. PubMed ID: 30642488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteolytic changes of myofibrillar and small heat shock proteins in different bovine muscles during aging: Their relevance to tenderness and water-holding capacity.
    Ma D; Kim YHB
    Meat Sci; 2020 May; 163():108090. PubMed ID: 32087505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat.
    Jiang S; Liu Y; Shen Z; Zhou B; Shen QW
    J Proteomics; 2019 Aug; 205():103412. PubMed ID: 31176012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of dietary garcinol supplementation on oxidative stability, muscle postmortem glycolysis and meat quality in pigs.
    Wang T; Li J; Shao Y; Yao W; Xia J; He Q; Huang F
    Meat Sci; 2020 Mar; 161():107998. PubMed ID: 31707156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein oxidation during frozen storage and subsequent processing of different beef muscles.
    Utrera M; Parra V; Estévez M
    Meat Sci; 2014 Feb; 96(2 Pt A):812-20. PubMed ID: 24200575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of lactate/phosphate injection enhancement on oxidation stability and protein degradation in early postmortem beef cuts packaged in high oxygen modified atmosphere.
    Kim YH; Huff-Lonergan E; Sebranek JG; Lonergan SM
    Meat Sci; 2010 Nov; 86(3):852-8. PubMed ID: 20696536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle.
    Silva LHP; Rodrigues RTS; Assis DEF; Benedeti PDB; Duarte MS; Chizzotti ML
    J Proteomics; 2019 May; 199():51-66. PubMed ID: 30862562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Difference in tenderness and pH decline between water buffalo meat and beef during postmortem aging.
    Neath KE; Del Barrio AN; Lapitan RM; Herrera JR; Cruz LC; Fujihara T; Muroya S; Chikuni K; Hirabayashi M; Kanai Y
    Meat Sci; 2007 Mar; 75(3):499-505. PubMed ID: 22063807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between water-holding capacity and protein denaturation in broiler breast meat.
    Bowker B; Zhuang H
    Poult Sci; 2015 Jul; 94(7):1657-64. PubMed ID: 26009757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasound as a potential process to tenderize beef: Sensory and technological parameters.
    Peña-Gonzalez E; Alarcon-Rojo AD; Garcia-Galicia I; Carrillo-Lopez L; Huerta-Jimenez M
    Ultrason Sonochem; 2019 May; 53():134-141. PubMed ID: 30639205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomic analysis reveals that lysine acetylation mediates the effect of antemortem stress on postmortem meat quality development.
    Zhou B; Shen Z; Liu Y; Wang C; Shen QW
    Food Chem; 2019 Sep; 293():396-407. PubMed ID: 31151627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Meta-proteomics for the discovery of protein biomarkers of beef tenderness: An overview of integrated studies.
    Picard B; Gagaoua M
    Food Res Int; 2020 Jan; 127():108739. PubMed ID: 31882086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of long term chilled (up to 5weeks) then frozen (up to 12months) storage at two different sub-zero holding temperatures on beef: 1. Meat quality and microbial loads.
    Holman BWB; Coombs CEO; Morris S; Kerr MJ; Hopkins DL
    Meat Sci; 2017 Nov; 133():133-142. PubMed ID: 28688261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of beef transcripts correlated with tenderness and moisture.
    Kee HJ; Park EW; Lee CK
    Mol Cells; 2008 May; 25(3):428-37. PubMed ID: 18443416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prerigor and postrigor changes in tenderness of ovine longissimus muscle.
    Wheeler TL; Koohmaraie M
    J Anim Sci; 1994 May; 72(5):1232-8. PubMed ID: 8056668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomics of dark cutting longissimus thoracis muscle from heifer and steer carcasses.
    Mahmood S; Turchinsky N; Paradis F; Dixon WT; Bruce HL
    Meat Sci; 2018 Mar; 137():47-57. PubMed ID: 29154218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying the aging response and nutrient composition for muscles of the beef round.
    Dixon CL; Woerner DR; Tokach RJ; Chapman PL; Engle TE; Tatum JD; Belk KE
    J Anim Sci; 2012 Mar; 90(3):996-1007. PubMed ID: 21984719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of temperature on protein phosphorylation in postmortem muscle.
    Ren C; Hou C; Li Z; Li X; Bai Y; Zhang D
    J Sci Food Agric; 2020 Jan; 100(2):551-559. PubMed ID: 31587285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteome changes on water-holding capacity of yak longissimus lumborum during postmortem aging.
    Zuo H; Han L; Yu Q; Niu K; Zhao S; Shi H
    Meat Sci; 2016 Nov; 121():409-419. PubMed ID: 27448195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.