These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33647197)

  • 1. How Frost Forms and Grows on Lubricated Micro- and Nanostructured Surfaces.
    Hauer L; Wong WSY; Donadei V; Hegner KI; Kondic L; Vollmer D
    ACS Nano; 2021 Mar; 15(3):4658-4668. PubMed ID: 33647197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary Balancing: Designing Frost-Resistant Lubricant-Infused Surfaces.
    Wong WSY; Hegner KI; Donadei V; Hauer L; Naga A; Vollmer D
    Nano Lett; 2020 Dec; 20(12):8508-8515. PubMed ID: 33206541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro- and Nanoengineered Metal Additively Manufactured Surfaces for Enhanced Anti-Frosting Applications.
    Zhao H; Ye H; Fazle Rabbi K; Wang X; Miljkovic N; Ho JY
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35697-35715. PubMed ID: 38934253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frost-free zone on macrotextured surfaces.
    Yao Y; Zhao TY; Machado C; Feldman E; Patankar NA; Park KC
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6323-6329. PubMed ID: 32156727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Durability and Degradation Mechanisms of Antifrosting Surfaces.
    Hoque MJ; Yan X; Qiu H; Qin Y; Du X; Stermer J; Miljkovic N
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13711-13723. PubMed ID: 36862945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique ice dendrite morphology on state-of-the-art oil-impregnated surfaces.
    Gandee H; Zhou Y; Lee J; Chomali J; Xu H; Adera S
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2214143120. PubMed ID: 36574684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combating Frosting with Joule-Heated Liquid-Infused Superhydrophobic Coatings.
    Elsharkawy M; Tortorella D; Kapatral S; Megaridis CM
    Langmuir; 2016 May; 32(17):4278-88. PubMed ID: 27021948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion of Lubricant from Nanostructured Oil-Infused Surfaces by Pendant Condensate Droplets.
    Adera S; Alvarenga J; Shneidman AV; Zhang CT; Davitt A; Aizenberg J
    ACS Nano; 2020 Jul; 14(7):8024-8035. PubMed ID: 32490664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rationally designed surface microstructural features for enhanced droplet jumping and anti-frosting performance.
    Zhao G; Zou G; Wang W; Geng R; Yan X; He Z; Liu L; Zhou X; Lv J; Wang J
    Soft Matter; 2020 May; 16(18):4462-4476. PubMed ID: 32323690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Frost Propagation on Breath Figures.
    Paulovics D; Raufaste C; Frisch T; Claudet C; Celestini F
    Langmuir; 2022 Mar; 38(9):2972-2978. PubMed ID: 35196019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of frost formation on lubricant-impregnated surfaces.
    Rykaczewski K; Anand S; Subramanyam SB; Varanasi KK
    Langmuir; 2013 Apr; 29(17):5230-8. PubMed ID: 23565857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of frost formation on the ice adhesion of micro-nano structure metal surface by femtosecond laser.
    Liu Z; Ye F; Tao H; Lin J
    J Colloid Interface Sci; 2021 Dec; 603():233-242. PubMed ID: 34186400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delaying Ice and Frost Formation Using Phase-Switching Liquids.
    Chatterjee R; Beysens D; Anand S
    Adv Mater; 2019 Apr; 31(17):e1807812. PubMed ID: 30873685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
    Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J
    ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophilic Slippery Surface Promotes Efficient Defrosting.
    Yang S; Li W; Song Y; Ying Y; Wen R; Du B; Jin Y; Wang Z; Ma X
    Langmuir; 2021 Oct; 37(40):11931-11938. PubMed ID: 34570495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infusing Silicone and Camellia Seed Oils into Micro-/Nanostructures for Developing Novel Anti-Icing/Frosting Surfaces for Food Freezing Applications.
    Zhu Z; Liang H; Sun DW
    ACS Appl Mater Interfaces; 2023 Mar; 15(11):14874-83. PubMed ID: 36897285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed Frost Growth on Nanoporous Microstructured Surfaces Utilizing Jumping and Sweeping Condensates.
    Mohammadian B; Annavarapu RK; Raiyan A; Nemani SK; Kim S; Wang M; Sojoudi H
    Langmuir; 2020 Jun; 36(24):6635-6650. PubMed ID: 32418428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces.
    Zhao G; Zou G; Wang W; Geng R; Yan X; He Z; Liu L; Zhou X; Lv J; Wang J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7805-7814. PubMed ID: 31972085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frosting Behavior of Superhydrophobic Nanoarrays under Ultralow Temperature.
    Zhang W; Wang S; Xiao Z; Yu X; Liang C; Zhang Y
    Langmuir; 2017 Sep; 33(36):8891-8898. PubMed ID: 28829603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.