These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33647197)

  • 21. Dynamic Defrosting on Scalable Superhydrophobic Surfaces.
    Murphy KR; McClintic WT; Lester KC; Collier CP; Boreyko JB
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24308-24317. PubMed ID: 28653826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of Metallic Superhydrophobic Surfaces with Tunable Condensate Self-Removal Capability and Excellent Anti-Frosting Performance.
    He JG; Zhao GL; Dai SJ; Li M; Zou GS; Wang JJ; Liu Y; Yu JQ; Xu LF; Li JQ; Fan LW; Huang M
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Droplets on Slippery Lubricant-Infused Porous Surfaces: A Macroscale to Nanoscale Perspective.
    Pham QN; Zhang S; Montazeri K; Won Y
    Langmuir; 2018 Nov; 34(47):14439-14447. PubMed ID: 30372082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frost halos from supercooled water droplets.
    Jung S; Tiwari MK; Poulikakos D
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16073-8. PubMed ID: 23012410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid fabrication of a dual-scale micro-nanostructured superhydrophobic aluminum surface with delayed condensation and ice formation properties.
    Barthwal S; Lim SH
    Soft Matter; 2019 Oct; 15(39):7945-7955. PubMed ID: 31544192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental study on frost-formation characteristics on cold surface of arched copper sample.
    Chen T; Cong Q; Jin J; Choy KL
    PLoS One; 2018; 13(12):e0208721. PubMed ID: 30533064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Condensation of Satellite Droplets on Lubricant-Cloaked Droplets.
    Ge Q; Raza A; Li H; Sett S; Miljkovic N; Zhang T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22246-22255. PubMed ID: 32306727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Desublimation Frosting on Nanoengineered Surfaces.
    Walker C; Lerch S; Reininger M; Eghlidi H; Milionis A; Schutzius TM; Poulikakos D
    ACS Nano; 2018 Aug; 12(8):8288-8296. PubMed ID: 30001108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localized Characteristics of the First Three Typical Condensation Frosting Stages in the Edge Region of a Horizontal Cold Plate.
    Zhang L; Song M; Chao CYH; Dang C; Shen J
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving the anti-icing/frosting property of a nanostructured superhydrophobic surface by the optimum selection of a surface modifier.
    Zuo Z; Liao R; Song X; Zhao X; Yuan Y
    RSC Adv; 2018 May; 8(36):19906-19916. PubMed ID: 35541649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting.
    Feng R; Xu C; Song F; Wang F; Wang XL; Wang YZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12373-12381. PubMed ID: 32048819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suppression of Frost Nucleation Achieved Using the Nanoengineered Integral Humidity Sink Effect.
    Sun X; Rykaczewski K
    ACS Nano; 2017 Jan; 11(1):906-917. PubMed ID: 28005319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.
    Nath S; Boreyko JB
    Langmuir; 2016 Aug; 32(33):8350-65. PubMed ID: 27463696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Inhibition of Icing and Frosting on Glass Surfaces by the Coating of Polyethylene Glycol and Polypeptide Mimicking Antifreeze Protein.
    Kasahara K; Waku T; Wilson PW; Tonooka T; Hagiwara Y
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32050479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow-Induced Long-Term Stable Slippery Surfaces.
    Baumli P; Teisala H; Bauer H; Garcia-Gonzalez D; Damle V; Geyer F; D'Acunzi M; Kaltbeitzel A; Butt HJ; Vollmer D
    Adv Sci (Weinh); 2019 Jun; 6(11):1900019. PubMed ID: 31179214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets.
    Kim A; Lee C; Kim H; Kim J
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7206-13. PubMed ID: 25782028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication Optimization of Ultra-Scalable Nanostructured Aluminum-Alloy Surfaces.
    Li L; Lin Y; Rabbi KF; Ma J; Chen Z; Patel A; Su W; Ma X; Boyina K; Sett S; Mondal D; Tomohiro N; Hirokazu F; Miljkovic N
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43489-43504. PubMed ID: 34468116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superoleophobic Slippery Lubricant-Infused Surfaces: Combining Two Extremes in the Same Surface.
    Dong Z; Schumann MF; Hokkanen MJ; Chang B; Welle A; Zhou Q; Ras RHA; Xu Z; Wegener M; Levkin PA
    Adv Mater; 2018 Nov; 30(45):e1803890. PubMed ID: 30160319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delayed Lubricant Depletion of Slippery Liquid Infused Porous Surfaces Using Precision Nanostructures.
    Laney SK; Michalska M; Li T; Ramirez FV; Portnoi M; Oh J; Thayne IG; Parkin IP; Tiwari MK; Papakonstantinou I
    Langmuir; 2021 Aug; 37(33):10071-10078. PubMed ID: 34286995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.