These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 33647322)

  • 1. Similarities in alcohol and opioid withdrawal syndromes suggest common negative reinforcement mechanisms involving the interoceptive antireward pathway.
    O'Sullivan SJ; Schwaber JS
    Neurosci Biobehav Rev; 2021 Jun; 125():355-364. PubMed ID: 33647322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Cell Scale Neuronal and Glial Gene Expression and Putative Cell Phenotypes and Networks in the Nucleus Tractus Solitarius in an Alcohol Withdrawal Time Series.
    O'Sullivan SJ; McIntosh-Clarke D; Park J; Vadigepalli R; Schwaber JS
    Front Syst Neurosci; 2021; 15():739790. PubMed ID: 34867221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the gut-brain axis in alcohol use disorders.
    Gorky J; Schwaber J
    Prog Neuropsychopharmacol Biol Psychiatry; 2016 Feb; 65():234-41. PubMed ID: 26188287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the gut microbiome in opioid use.
    Ren M; Lotfipour S
    Behav Pharmacol; 2020 Apr; 31(2&3):113-121. PubMed ID: 31895059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antireward, compulsivity, and addiction: seminal contributions of Dr. Athina Markou to motivational dysregulation in addiction.
    Koob GF
    Psychopharmacology (Berl); 2017 May; 234(9-10):1315-1332. PubMed ID: 28050629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurobiology of Opioid Addiction: Opponent Process, Hyperkatifeia, and Negative Reinforcement.
    Koob GF
    Biol Psychiatry; 2020 Jan; 87(1):44-53. PubMed ID: 31400808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gut microbiome contributes to somatic morphine withdrawal behavior and implicates a TLR2 mediated mechanism.
    Truitt B; Venigalla G; Singh P; Singh S; Tao J; Chupikova I; Roy S
    Gut Microbes; 2023; 15(1):2242610. PubMed ID: 37589387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary Supplementation with Omega-3 Polyunsaturated Fatty Acids Reduces Opioid-Seeking Behaviors and Alters the Gut Microbiome.
    Hakimian JK; Dong TS; Barahona JA; Lagishetty V; Tiwari S; Azani D; Barrera M; Lee S; Severino AL; Mittal N; Cahill CM; Jacobs JP; Walwyn WM
    Nutrients; 2019 Aug; 11(8):. PubMed ID: 31416242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opioid Withdrawal Abruptly Disrupts Amygdala Circuit Function by Reducing Peptide Actions.
    Gregoriou GC; Patel SD; Pyne S; Winters BL; Bagley EE
    J Neurosci; 2023 Mar; 43(10):1668-1681. PubMed ID: 36781220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opioid withdrawal: role in addiction and neural mechanisms.
    Monroe SC; Radke AK
    Psychopharmacology (Berl); 2023 Jul; 240(7):1417-1433. PubMed ID: 37162529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiome and substances of abuse.
    Salavrakos M; Leclercq S; De Timary P; Dom G
    Prog Neuropsychopharmacol Biol Psychiatry; 2021 Mar; 105():110113. PubMed ID: 32971216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory.
    Koob GF
    Pharmacopsychiatry; 2009 May; 42 Suppl 1(Suppl 1):S32-41. PubMed ID: 19434554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cues conditioned to withdrawal and negative reinforcement: Neglected but key motivational elements driving opioid addiction.
    Pantazis CB; Gonzalez LA; Tunstall BJ; Carmack SA; Koob GF; Vendruscolo LF
    Sci Adv; 2021 Apr; 7(15):. PubMed ID: 33827822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell Glia and Neuron Gene Expression in the Central Amygdala in Opioid Withdrawal Suggests Inflammation With Correlated Gut Dysbiosis.
    O'Sullivan SJ; Malahias E; Park J; Srivastava A; Reyes BAS; Gorky J; Vadigepalli R; Van Bockstaele EJ; Schwaber JS
    Front Neurosci; 2019; 13():665. PubMed ID: 31333398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Analyses of the Gut Microbiota, Intestinal Permeability, and Serum Metabolome Phenotype in Rats with Alcohol Withdrawal Syndrome.
    Yang F; Wei J; Shen M; Ding Y; Lu Y; Ishaq HM; Li D; Yan D; Wang Q; Zhang R
    Appl Environ Microbiol; 2021 Aug; 87(18):e0083421. PubMed ID: 34190609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended amygdala, conditioned withdrawal and memory consolidation.
    Baidoo N; Leri F
    Prog Neuropsychopharmacol Biol Psychiatry; 2022 Mar; 113():110435. PubMed ID: 34509531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conceptualizing withdrawal-induced escalation of alcohol self-administration as a learned, plasticity-dependent process.
    Walker BM
    Alcohol; 2012 Jun; 46(4):339-48. PubMed ID: 22459874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction as a Reward Deficit/Stress Surfeit Disorder.
    Koob GF; Vendruscolo L
    Curr Top Behav Neurosci; 2023 Jul; ():. PubMed ID: 37421551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fecal microbiota transplantation and antibiotic treatment attenuate naloxone-precipitated opioid withdrawal in morphine-dependent mice.
    Thomaz AC; Iyer V; Woodward TJ; Hohmann AG
    Exp Neurol; 2021 Sep; 343():113787. PubMed ID: 34153321
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.