These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33647614)

  • 21. Consecutive reduction of Cr(VI) by Fe(II) formed through photo-reaction of iron-dissolved organic matter originated from biochar.
    Kim HB; Kim JG; Kim SH; Kwon EE; Baek K
    Environ Pollut; 2019 Oct; 253():231-238. PubMed ID: 31310873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decreased Electron Transfer between Cr(VI) and AH2DS in the Presence of Goethite.
    Tomaszewski EJ; Ginder-Vogel M
    J Environ Qual; 2018 Jan; 47(1):139-146. PubMed ID: 29415106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Interfacial Behavior between Biochar and Soil Minerals and Its Effect on Biochar Stability.
    Yang F; Zhao L; Gao B; Xu X; Cao X
    Environ Sci Technol; 2016 Mar; 50(5):2264-71. PubMed ID: 26828311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole.
    Zhao Z; Zhou W
    Environ Pollut; 2019 Feb; 245():208-217. PubMed ID: 30423535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption.
    Xu X; Huang H; Zhang Y; Xu Z; Cao X
    Environ Pollut; 2019 Jan; 244():423-430. PubMed ID: 30352357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of chromate reduction in soils by surface modified biochar.
    Mandal S; Sarkar B; Bolan N; Ok YS; Naidu R
    J Environ Manage; 2017 Jan; 186(Pt 2):277-284. PubMed ID: 27229360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of modification and co-aging with soils on Cd(II) adsorption behaviors and quantitative mechanisms by biochar.
    Meng Z; Huang S; Lin Z
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):8902-8915. PubMed ID: 35041169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New Insight into the Natural Detoxification of Cr(VI) in Fe-Rich Surface Soil: Crucial Role of Photogenerated Silicate-Bound Fe(II).
    Zhang Z; Ren J; Liang J; Xu X; Zhao L; Qiu H; Li H; Cao X
    Environ Sci Technol; 2023 Dec; 57(50):21370-21381. PubMed ID: 37946506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions between biochar and clay minerals in changing biochar carbon stability.
    Jing F; Sun Y; Liu Y; Wan Z; Chen J; Tsang DCW
    Sci Total Environ; 2022 Feb; 809():151124. PubMed ID: 34695458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous reduction and immobilization of Cr(VI) in seasonally frozen areas: Remediation mechanisms and the role of ageing.
    Hou R; Wang L; Shen Z; Alessi DS; Hou D
    J Hazard Mater; 2021 Aug; 415():125650. PubMed ID: 34088176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overcoming biochar limitations to remediate pentachlorophenol in soil by modifying its electrochemical properties.
    Chacón FJ; Cayuela ML; Cederlund H; Sánchez-Monedero MA
    J Hazard Mater; 2022 Mar; 426():127805. PubMed ID: 34823948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of UV radiation for in-situ Cr(VI) reduction from contaminated soil with electrokinetic remediation.
    Zheng Y; Li H; Yu Q; Yu L; Jiao B; Li D
    J Hazard Mater; 2021 Aug; 416():125806. PubMed ID: 33873035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contrasting effects of Cr(III) and Cr(VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation.
    Park JH
    Environ Pollut; 2020 Nov; 266(Pt 2):115073. PubMed ID: 32629411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aging effect of minerals on biochar properties and sorption capacities for atrazine and phenanthrene.
    Ren X; Wang F; Zhang P; Guo J; Sun H
    Chemosphere; 2018 Sep; 206():51-58. PubMed ID: 29730565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Cr(VI) elimination from water by goethite-impregnated activated carbon coupled with weak electric field.
    Li B; Li W; Zuo Q; Yin W; Li P; Wu J
    Environ Res; 2024 May; 248():118253. PubMed ID: 38278507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1.
    Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F
    Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-catalyzed chromium(VI) reduction by organic compounds and soil minerals.
    Tzou YM; Loeppert RH; Wang MK
    J Environ Qual; 2003; 32(6):2076-84. PubMed ID: 14674529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-redox and simultaneous removal of Cr(VI) and As(III): Influences of Fe(II), Fe(III), oxalic acid, and dissolved organic carbon.
    Ng KH; Hsu LC; Liu YT; Hsiao CY; Chiang PN; Teah HY; Hung JT; Tzou YM
    Ecotoxicol Environ Saf; 2022 Oct; 245():114084. PubMed ID: 36152429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hexavalent chromium remediation based on the synergistic effect between chemoautotrophic bacteria and sulfide minerals.
    Gan M; Gu C; Ding J; Zhu J; Liu X; Qiu G
    Ecotoxicol Environ Saf; 2019 May; 173():118-130. PubMed ID: 30771655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet-dry and freeze-thaw cycling.
    Yang K; Wang X; Cheng H; Tao S
    Environ Pollut; 2021 Jan; 268(Pt A):115846. PubMed ID: 33143976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.