These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33647644)

  • 1. Evaluating the impact of interbasin water transfer on water quality in the recipient river basin with SWAT.
    Woo SY; Kim SJ; Lee JW; Kim SH; Kim YW
    Sci Total Environ; 2021 Jul; 776():145984. PubMed ID: 33647644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the impacts of inter-basin water transfer projects on ecosystem services in the Fenhe River Basin using the SWAT model.
    Li L; Wang L; Liu R; Cao L; Wang Y; Liu Y
    Environ Monit Assess; 2023 Mar; 195(4):455. PubMed ID: 36892619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water transfer infrastructure buffers water scarcity risks to supply chains.
    Sun S; Tang Q; Konar M; Fang C; Liu H; Liu X; Fu G
    Water Res; 2023 Feb; 229():119442. PubMed ID: 36473410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.
    Yang X; Tan L; He R; Fu G; Ye J; Liu Q; Wang G
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26545-26561. PubMed ID: 28952024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interbasin water transfer, riverine connectivity, and spatial controls on fish biodiversity.
    Grant EH; Lynch HJ; Muneepeerakul R; Arunachalam M; Rodríguez-Iturbe I; Fagan WF
    PLoS One; 2012; 7(3):e34170. PubMed ID: 22470533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok).
    Trang NTT; Shrestha S; Shrestha M; Datta A; Kawasaki A
    Sci Total Environ; 2017 Jan; 576():586-598. PubMed ID: 27810747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current and future hot-spots and hot-moments of nitrous oxide emission in a cold climate river basin.
    Shrestha NK; Wang J
    Environ Pollut; 2018 Aug; 239():648-660. PubMed ID: 29709836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. System Dynamics Model for Evaluating Socio-Economic Impacts of Different Water Diversion Quantity from Transboundary River Basins-A Case Study of Xinjiang.
    Shao Z; Wu F; Li F; Zhao Y; Xu X
    Int J Environ Res Public Health; 2020 Dec; 17(23):. PubMed ID: 33291432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SWAT Modeling of Non-Point Source Pollution in Depression-Dominated Basins under Varying Hydroclimatic Conditions.
    Tahmasebi Nasab M; Grimm K; Bazrkar MH; Zeng L; Shabani A; Zhang X; Chu X
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30413033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.
    Zhang Y; Xia J; Chen J; Zhang M
    Environ Monit Assess; 2011 Feb; 173(1-4):409-30. PubMed ID: 20237841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient loads in the river mouth of the Río Verde basin in Jalisco, Mexico: how to prevent eutrophication in the future reservoir?
    Jayme-Torres G; Hansen AM
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20497-20509. PubMed ID: 28980187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new framework for integrated, holistic, and transparent evaluation of inter-basin water transfer schemes.
    Sinha P; Rollason E; Bracken LJ; Wainwright J; Reaney SM
    Sci Total Environ; 2020 Jun; 721():137646. PubMed ID: 32169640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benthic macroinvertebrates assemblages of glacial-fed (Bheri) and rain-fed (Babai) rivers in western Nepal in the wake of proposedinter-basin water transfer.
    Khatri K; Gurung S; Jha BR; Khadka UR
    Biodivers Data J; 2022; 10():e79275. PubMed ID: 35210919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategic planning for instream flow restoration: a case study of potential climate change impacts in the central Columbia River basin.
    Donley EE; Naiman RJ; Marineau MD
    Glob Chang Biol; 2012 Oct; 18(10):3071-3086. PubMed ID: 28741832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited water scarcity mitigation by expanded interbasin physical and virtual water diversions with uneven economic value added in China.
    Wang W; Zhuo L; Rulli MC; Wu P
    Sci Total Environ; 2022 Nov; 847():157625. PubMed ID: 35901876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass production in the Lower Mississippi River Basin: Mitigating associated nutrient and sediment discharge to the Gulf of Mexico.
    Ha M; Zhang Z; Wu M
    Sci Total Environ; 2018 Sep; 635():1585-1599. PubMed ID: 29703598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SWAT ungauged: Water quality modeling in the Upper Mississippi River Basin.
    Qi J; Zhang X; Yang Q; Srinivasan R; Arnold JG; Li J; Waldholf ST; Cole J
    J Hydrol (Amst); 2020; 584():. PubMed ID: 33627888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of climate change on water resources in the upper Blue Nile Basin of Ethiopia.
    Roth V; Lemann T; Zeleke G; Subhatu AT; Nigussie TK; Hurni H
    Heliyon; 2018 Sep; 4(9):e00771. PubMed ID: 30225375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada.
    Shrestha NK; Du X; Wang J
    Sci Total Environ; 2017 Dec; 601-602():425-440. PubMed ID: 28570976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.