These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33647834)

  • 21. What serial homologs can tell us about the origin of insect wings.
    Tomoyasu Y; Ohde T; Clark-Hachtel C
    F1000Res; 2017; 6():268. PubMed ID: 28357056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrabithorax and the evolution of insect forewing/hindwing differentiation.
    Tomoyasu Y
    Curr Opin Insect Sci; 2017 Feb; 19():8-15. PubMed ID: 28521947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The evolution of insect wings and their sensory apparatus.
    Dickinson MH; Hannaford S; Palka J
    Brain Behav Evol; 1997 Jul; 50(1):13-24. PubMed ID: 9209763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Origin and transformation of the in-flight wing-coupling structure in Psocodea (Insecta: Paraneoptera).
    Ogawa N; Yoshizawa K
    J Morphol; 2018 Apr; 279(4):517-530. PubMed ID: 29226378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative developmental analysis of Drosophila and Tribolium reveals conserved and diverged roles of abrupt in insect wing evolution.
    Ravisankar P; Lai YT; Sambrani N; Tomoyasu Y
    Dev Biol; 2016 Jan; 409(2):518-29. PubMed ID: 26687509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wing serial homologues and the diversification of insect outgrowths: insights from the pupae of scarab beetles.
    Hu Y; Moczek AP
    Proc Biol Sci; 2021 Jan; 288(1943):20202828. PubMed ID: 33467999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution: The origin of insect wings revisited.
    Ross A
    Curr Biol; 2022 Aug; 32(15):R851-R853. PubMed ID: 35944489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homeotic genes and diversification of the insect body plan.
    Warren R; Carroll S
    Curr Opin Genet Dev; 1995 Aug; 5(4):459-65. PubMed ID: 7580137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets.
    Damen WG; Saridaki T; Averof M
    Curr Biol; 2002 Oct; 12(19):1711-6. PubMed ID: 12361577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homeotic genes and the regulation and evolution of insect wing number.
    Carroll SB; Weatherbee SD; Langeland JA
    Nature; 1995 May; 375(6526):58-61. PubMed ID: 7723843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Macroevolutionary Analyses Provide New Evidence of Phasmid Wings Evolution as a Reversible Process.
    Forni G; Martelossi J; Valero P; Hennemann FH; Conle O; Luchetti A; Mantovani B
    Syst Biol; 2022 Oct; 71(6):1471-1486. PubMed ID: 35689634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wing serial homologs and the origin and evolution of the insect wing.
    Ohde T; Yaginuma T; Niimi T
    Zoology (Jena); 2014 Apr; 117(2):93-4. PubMed ID: 24360127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complex Evolution of Insect Insulin Receptors and Homologous Decoy Receptors, and Functional Significance of Their Multiplicity.
    Smýkal V; Pivarči M; Provazník J; Bazalová O; Jedlička P; Lukšan O; Horák A; Vaněčková H; Beneš V; Fiala I; Hanus R; Doležel D
    Mol Biol Evol; 2020 Jun; 37(6):1775-1789. PubMed ID: 32101294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of female-specific wingless forms in bagworm moths.
    Niitsu S; Sugawara H; Hayashi F
    Evol Dev; 2017 Jan; 19(1):9-16. PubMed ID: 27869366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings.
    Almudi I; Vizueta J; Wyatt CDR; de Mendoza A; Marlétaz F; Firbas PN; Feuda R; Masiero G; Medina P; Alcaina-Caro A; Cruz F; Gómez-Garrido J; Gut M; Alioto TS; Vargas-Chavez C; Davie K; Misof B; González J; Aerts S; Lister R; Paps J; Rozas J; Sánchez-Gracia A; Irimia M; Maeso I; Casares F
    Nat Commun; 2020 May; 11(1):2631. PubMed ID: 32457347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exoskeletons across the Pancrustacea: Comparative Morphology, Physiology, Biochemistry and Genetics.
    Roer R; Abehsera S; Sagi A
    Integr Comp Biol; 2015 Nov; 55(5):771-91. PubMed ID: 26136336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome profiling with focus on potential key genes for wing development and evolution in Megaloprepus caerulatus, the damselfly species with the world's largest wings.
    Feindt W; Oppenheim SJ; DeSalle R; Goldstein PZ; Hadrys H
    PLoS One; 2018; 13(1):e0189898. PubMed ID: 29329292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circulation in Insect Wings.
    Salcedo MK; Socha JJ
    Integr Comp Biol; 2020 Nov; 60(5):1208-1220. PubMed ID: 32870980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of the Distal-less gene in the development and evolution of insect limbs.
    Panganiban G; Nagy L; Carroll SB
    Curr Biol; 1994 Aug; 4(8):671-5. PubMed ID: 7953552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.