These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33647889)

  • 21. Controlling Exciton and Valley Dynamics in Two-Dimensional Heterostructures with Atomically Precise Interlayer Proximity.
    Zhou H; Zhao Y; Tao W; Li Y; Zhou Q; Zhu H
    ACS Nano; 2020 Apr; 14(4):4618-4625. PubMed ID: 32181635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Temperature Excitonic Bose-Einstein Condensate in Centrosymmetric Two-Dimensional Semiconductors.
    Wang D; Luo N; Duan W; Zou X
    J Phys Chem Lett; 2021 Jun; 12(23):5479-5485. PubMed ID: 34086474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic excitations of bulk LiCl from many-body perturbation theory.
    Jiang YF; Wang NP; Rohlfing M
    J Chem Phys; 2013 Dec; 139(21):214710. PubMed ID: 24320397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excitons in two-dimensional atomic layer materials from time-dependent density functional theory: mono-layer and bi-layer hexagonal boron nitride and transition-metal dichalcogenides.
    Suzuki Y; Watanabe K
    Phys Chem Chem Phys; 2020 Feb; 22(5):2908-2916. PubMed ID: 31950126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exciton-Phonon Interactions in Monolayer Germanium Selenide from First Principles.
    Huang TA; Zacharias M; Lewis DK; Giustino F; Sharifzadeh S
    J Phys Chem Lett; 2021 Apr; 12(15):3802-3808. PubMed ID: 33848154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unveiling excitons in two-dimensional
    Guassi MR; Besse R; Piotrowski MJ; C Rêgo CR; Guedes-Sobrinho D; da Rosa AL; Cavalheiro Dias A
    Sci Rep; 2024 May; 14(1):11710. PubMed ID: 38778075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excitonic and Environmental Screening Effects in Two-Dimensional Janus MSO (M = Ga, In).
    Yi ZJ; Ji R
    Inorg Chem; 2024 Aug; 63(32):14989-14997. PubMed ID: 39077763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental Screening Effects in 2D Materials: Renormalization of the Bandgap, Electronic Structure, and Optical Spectra of Few-Layer Black Phosphorus.
    Qiu DY; da Jornada FH; Louie SG
    Nano Lett; 2017 Aug; 17(8):4706-4712. PubMed ID: 28677398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excitonic effects and optical properties of passivated CdSe clusters.
    del Puerto ML; Tiago ML; Chelikowsky JR
    Phys Rev Lett; 2006 Sep; 97(9):096401. PubMed ID: 17026380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interlayer Coupling and Gate-Tunable Excitons in Transition Metal Dichalcogenide Heterostructures.
    Gao S; Yang L; Spataru CD
    Nano Lett; 2017 Dec; 17(12):7809-7813. PubMed ID: 29164895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determining the Structure-Property Relationships of Quasi-Two-Dimensional Semiconductor Nanoplatelets.
    Greenwood AR; Mazzotti S; Norris DJ; Galli G
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(8):4820-4827. PubMed ID: 38230251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theory and Ab Initio Computation of the Anisotropic Light Emission in Monolayer Transition Metal Dichalcogenides.
    Chen HY; Palummo M; Sangalli D; Bernardi M
    Nano Lett; 2018 Jun; 18(6):3839-3843. PubMed ID: 29737164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic and Excitonic Properties of MSi
    Woźniak T; Umm-E-Hani ; Faria Junior PE; Ramzan MS; Kuc AB
    Small; 2023 May; 19(19):e2206444. PubMed ID: 36772899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(I
    Muhammad Z; Liu P; Ahmad R; Jalali Asadabadi S; Franchini C; Ahmad I
    Phys Chem Chem Phys; 2020 Jun; 22(21):11943-11955. PubMed ID: 32412023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Koopmans Meets Bethe-Salpeter: Excitonic Optical Spectra without GW.
    Elliott JD; Colonna N; Marsili M; Marzari N; Umari P
    J Chem Theory Comput; 2019 Jun; 15(6):3710-3720. PubMed ID: 30998361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-Dependent Screening Explains the Ultrafast Excitonic Signal Rise in 2D Semiconductors.
    Smejkal V; Libisch F; Molina-Sanchez A; Trovatello C; Wirtz L; Marini A
    ACS Nano; 2021 Jan; 15(1):1179-1185. PubMed ID: 33382589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strong anisotropic optical properties of 8-
    Deily Nazar N; Vazifehshenas T; Ebrahimi MR; Peeters FM
    Phys Chem Chem Phys; 2021 Aug; 23(30):16417-16422. PubMed ID: 34318830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical Properties of Layered Hybrid Organic-Inorganic Halide Perovskites: A Tight-Binding GW-BSE Study.
    Cho Y; Berkelbach TC
    J Phys Chem Lett; 2019 Oct; 10(20):6189-6196. PubMed ID: 31560556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quasiparticle energies and significant exciton effects of monolayered blue arsenic phosphorus conformers.
    Zhao H; Wang Q; Jia B; Han L; Chen W; Hao J; Wu L; Lu P; Guan P
    Phys Chem Chem Phys; 2021 Oct; 23(41):23808-23817. PubMed ID: 34644716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A method to restore the intrinsic dielectric functions of 2D materials in periodic calculations.
    Yang G; Gao SP
    Nanoscale; 2021 Oct; 13(40):17057-17067. PubMed ID: 34622908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.