These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33648105)

  • 1. Versatile and high temperature spectroscopic cell for operando fluorescence and transmission x-ray absorption spectroscopic studies of heterogeneous catalysts.
    Eggart D; Zimina A; Cavusoglu G; Casapu M; Doronkin DE; Lomachenko KA; Grunwaldt JD
    Rev Sci Instrum; 2021 Feb; 92(2):023106. PubMed ID: 33648105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO
    Aguilar-Tapia A; Ould-Chikh S; Lahera E; Prat A; Delnet W; Proux O; Kieffer I; Basset JM; Takanabe K; Hazemann JL
    Rev Sci Instrum; 2018 Mar; 89(3):035109. PubMed ID: 29604772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel high-pressure/high-temperature reactor cell for in situ and operando x-ray absorption spectroscopy studies of heterogeneous catalysts at synchrotron facilities.
    Nassereddine A; Prat A; Ould-Chikh S; Lahera E; Proux O; Delnet W; Costes A; Maurin I; Kieffer I; Min S; Rovezzi M; Testemale D; Cerrillo Olmo JL; Gascon J; Hazemann JL; Aguilar Tapia A
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38690984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ/operando plug-flow fixed-bed cell for synchrotron PXRD and XAFS investigations at high temperature, pressure, controlled gas atmosphere and ultra-fast heating.
    Bischoff B; Bekheet MF; Dal Molin E; Praetz S; Kanngießer B; Schomäcker R; Etter M; Jeppesen HS; Tayal A; Gurlo A; Gili A
    J Synchrotron Radiat; 2024 Jan; 31(Pt 1):77-84. PubMed ID: 38010796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous-flow reactor setup for operando x-ray absorption spectroscopy of high pressure heterogeneous liquid-solid catalytic processes.
    Deschner BJ; Doronkin DE; Sheppard TL; Rabsch G; Grunwaldt JD; Dittmeyer R
    Rev Sci Instrum; 2021 Dec; 92(12):124101. PubMed ID: 34972445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual reactor for in situ/operando fluorescent mode XAS studies of sample containing low-concentration 3d or 5d metal elements.
    Nguyen L; Tang Y; Li Y; Zhang X; Wang D; Tao FF
    Rev Sci Instrum; 2018 May; 89(5):054103. PubMed ID: 29864830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ and operando study of catalysts during high-temperature high-pressure catalysis in a fixed-bed plug flow reactor with x-ray absorption spectroscopy.
    Tang Y; Nguyen L; Li Y; Tao F
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37255372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy.
    Bansode A; Guilera G; Cuartero V; Simonelli L; Avila M; Urakawa A
    Rev Sci Instrum; 2014 Aug; 85(8):084105. PubMed ID: 25173285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques.
    Baier S; Rochet A; Hofmann G; Kraut M; Grunwaldt JD
    Rev Sci Instrum; 2015 Jun; 86(6):065101. PubMed ID: 26133867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operando Spectroscopy to Understand Dynamic Structural Changes of Solid Catalysts.
    Sarma BB; Grunwaldt JD
    Chimia (Aarau); 2024 May; 78(5):288-296. PubMed ID: 38822771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical kinetics for operando electron microscopy of catalysts: 3D modeling of gas and temperature distributions during catalytic reactions.
    Vincent JL; Vance JW; Langdon JT; Miller BK; Crozier PA
    Ultramicroscopy; 2020 Nov; 218():113080. PubMed ID: 32795882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic reactor for operando spatially resolved structure-activity profiling using high-energy X-ray diffraction.
    Wollak B; Espinoza D; Dippel AC; Sturm M; Vrljic F; Gutowski O; Nielsen IG; Sheppard TL; Korup O; Horn R
    J Synchrotron Radiat; 2023 May; 30(Pt 3):571-581. PubMed ID: 37042662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A versatile in situ spectroscopic cell for fluorescence/transmission EXAFS and X-ray diffraction of heterogeneous catalysts in gas and liquid phase.
    Hannemann S; Casapu M; Grunwaldt JD; Haider P; Trüssel P; Baiker A; Welter E
    J Synchrotron Radiat; 2007 Jul; 14(Pt 4):345-54. PubMed ID: 17587660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in situ sample environment reaction cell for spatially resolved X-ray absorption spectroscopy studies of powders and small structured reactors.
    Zhang C; Gustafson J; Merte LR; Evertsson J; Norén K; Carlson S; Svensson H; Carlsson PA
    Rev Sci Instrum; 2015 Mar; 86(3):033112. PubMed ID: 25832216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements.
    Centomo P; Meneghini C; Zecca M
    Rev Sci Instrum; 2013 May; 84(5):054102. PubMed ID: 23742567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al
    Wang Y; Craven M; Yu X; Ding J; Bryant P; Huang J; Tu X
    ACS Catal; 2019 Dec; 9(12):10780-10793. PubMed ID: 32064144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in situ and operando X-ray absorption spectroscopy setup for measuring sub-monolayer model and powder catalysts.
    Weiher N; Bus E; Gorzolnik B; Möller M; Prins R; van Bokhoven JA
    J Synchrotron Radiat; 2005 Sep; 12(Pt 5):675-9. PubMed ID: 16120994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operando potassium K-edge X-ray absorption spectroscopy: investigating potassium catalysts during soot oxidation.
    Davies CJ; Mayer A; Gabb J; Walls JM; Degirmenci V; Thompson PBJ; Cibin G; Golunski S; Kondrat SA
    Phys Chem Chem Phys; 2020 Sep; 22(34):18976-18988. PubMed ID: 32648863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman monitoring of a catalytic system at work: Influence of the reactant on the sensitivity to laser-induced heating.
    Schnee J; Gaigneaux EM
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():151-159. PubMed ID: 27632798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Profiling of a Pd/Al
    Decarolis D; Clark AH; Pellegrinelli T; Nachtegaal M; Lynch EW; Catlow CRA; Gibson EK; Goguet A; Wells PP
    ACS Catal; 2021 Feb; 11(4):2141-2149. PubMed ID: 33643682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.