These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33648142)

  • 1. Instrument for in situ hard x-ray nanobeam characterization during epitaxial crystallization and materials transformations.
    Marks SD; Quan P; Liu R; Highland MJ; Zhou H; Kuech TF; Stephenson GB; Evans PG
    Rev Sci Instrum; 2021 Feb; 92(2):023908. PubMed ID: 33648142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging.
    Evans PG; Chahine G; Grifone R; Jacques VL; Spalenka JW; Schülli TU
    Rev Sci Instrum; 2013 Nov; 84(11):113903. PubMed ID: 24289407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The power of in situ pulsed laser deposition synchrotron characterization for the detection of domain formation during growth of Ba0.5Sr0.5TiO3 on MgO.
    Bauer S; Lazarev S; Molinari A; Breitenstein A; Leufke P; Kruk R; Hahn H; Baumbach T
    J Synchrotron Radiat; 2014 Mar; 21(Pt 2):386-94. PubMed ID: 24562560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction.
    Bürgi J; Neuenschwander R; Kellermann G; García Molleja J; Craievich AF; Feugeas J
    Rev Sci Instrum; 2013 Jan; 84(1):015102. PubMed ID: 23387690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Nucleation and Growth Kinetics of Amorphous SrTiO
    Chen Y; Yusuf MH; Guan Y; Jacobson RB; Lagally MG; Babcock SE; Kuech TF; Evans PG
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):41034-41042. PubMed ID: 29094920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental setup for high-temperature in situ studies of crystallization of thin films with atmosphere control.
    Blichfeld AB; Bakken K; Chernyshov D; Glaum J; Grande T; Einarsrud MA
    J Synchrotron Radiat; 2020 Sep; 27(Pt 5):1209-1217. PubMed ID: 32876595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.
    Schroeder JL; Thomson W; Howard B; Schell N; Näslund LÅ; Rogström L; Johansson-Jõesaar MP; Ghafoor N; Odén M; Nothnagel E; Shepard A; Greer J; Birch J
    Rev Sci Instrum; 2015 Sep; 86(9):095113. PubMed ID: 26429486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved grazing-incidence pair distribution functions during deposition by radio-frequency magnetron sputtering.
    Roelsgaard M; Dippel AC; Borup KA; Nielsen IG; Broge NLN; Röh JT; Gutowski O; Iversen BB
    IUCrJ; 2019 Mar; 6(Pt 2):299-304. PubMed ID: 30867927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant nanodiffraction x-ray imaging reveals role of magnetic domains in complex oxide spin caloritronics.
    Evans PG; Marks SD; Geprägs S; Dietlein M; Joly Y; Dai M; Hu J; Bouchenoire L; Thompson PBJ; Schülli TU; Richard MI; Gross R; Carbone D; Mannix D
    Sci Adv; 2020 Oct; 6(40):. PubMed ID: 33008906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices.
    Bein B; Hsing HC; Callori SJ; Sinsheimer J; Chinta PV; Headrick RL; Dawber M
    Nat Commun; 2015 Dec; 6():10136. PubMed ID: 26634894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Selection and Structure of Low-Defect-Density γ-Al
    Liu R; Elleuch O; Wan Z; Zuo P; Janicki TD; Alfieri AD; Babcock SE; Savage DE; Schmidt JR; Evans PG; Kuech TF
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57598-57608. PubMed ID: 33290036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Study of the Interface-Mediated Solid-State Reactions during Growth and Postgrowth Annealing of Pd/a-Ge Bilayers.
    Krause B; Abadias G; Babonneau D; Michel A; Resta A; Coati A; Garreau Y; Vlad A; Plech A; Wochner P; Baumbach T
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):11268-11280. PubMed ID: 36791093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epitaxial GeSn Obtained by High Power Impulse Magnetron Sputtering and the Heterojunction with Embedded GeSn Nanocrystals for Shortwave Infrared Detection.
    Dascalescu I; Zoita NC; Slav A; Matei E; Iftimie S; Comanescu F; Lepadatu AM; Palade C; Lazanu S; Buca D; Teodorescu VS; Ciurea ML; Braic M; Stoica T
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33879-33886. PubMed ID: 32633935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of single-phase epitaxial Cr
    Gharavi MA; Greczynski G; Eriksson F; Lu J; Balke B; Fournier D; le Febvrier A; Pallier C; Eklund P
    J Mater Sci; 2019; 54(2):1434-1442. PubMed ID: 30930478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides.
    Ju G; Highland MJ; Yanguas-Gil A; Thompson C; Eastman JA; Zhou H; Brennan SM; Stephenson GB; Fuoss PH
    Rev Sci Instrum; 2017 Mar; 88(3):035113. PubMed ID: 28372371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guiding epitaxial crystallization of amorphous solids at the nanoscale: Interfaces, stress, and precrystalline order.
    Janicki TD; Wan Z; Liu R; Evans PG; Schmidt JR
    J Chem Phys; 2022 Sep; 157(10):100901. PubMed ID: 36109220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes.
    Klug JA; Weimer MS; Emery JD; Yanguas-Gil A; Seifert S; Schlepütz CM; Martinson AB; Elam JW; Hock AS; Proslier T
    Rev Sci Instrum; 2015 Nov; 86(11):113901. PubMed ID: 26628145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates.
    Mohammed WM; Yanilkin IV; Gumarov AI; Kiiamov AG; Yusupov RV; Tagirov LR
    Beilstein J Nanotechnol; 2020; 11():807-813. PubMed ID: 32509494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MgO Thin Film Growth on Si(001) by Radio-Frequency Sputtering Method.
    Singh JP; Kumar M; Lim WC; Lee HH; Lee YM; Lee S; Chae KH
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7530-7534. PubMed ID: 32711623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental setup combining in situ hard X-ray photoelectron spectroscopy and real-time surface X-ray diffraction for characterizing atomic and electronic structure evolution during complex oxide heterostructure growth.
    Eres G; Rouleau CM; Lu Q; Zhang Z; Benda E; Lee HN; Tischler JZ; Fong DD
    Rev Sci Instrum; 2019 Sep; 90(9):093902. PubMed ID: 31575256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.