These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33648553)

  • 1. Fe(2)OG: an integrated HMM profile-based web server to predict and analyze putative non-haem iron(II)- and 2-oxoglutarate-dependent dioxygenase function in protein sequences.
    Kundu S
    BMC Res Notes; 2021 Mar; 14(1):80. PubMed ID: 33648553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and prediction of catalytic domains in 2-oxoglutarate dependent dioxygenases.
    Kundu S
    BMC Res Notes; 2012 Aug; 5():410. PubMed ID: 22862831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases.
    Kundu S
    Front Plant Sci; 2015; 6():98. PubMed ID: 25814993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assay for Fe(II)/2-oxoglutarate-dependent dioxygenases by enzyme-coupled detection of succinate formation.
    Luo L; Pappalardi MB; Tummino PJ; Copeland RA; Fraser ME; Grzyska PK; Hausinger RP
    Anal Biochem; 2006 Jun; 353(1):69-74. PubMed ID: 16643838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and magnetic studies of wild-type and mutant forms of the Fe(II)- and 2-oxoglutarate-dependent decarboxylase ALKBH4.
    Bjørnstad LG; Zoppellaro G; Tomter AB; Falnes PØ; Andersson KK
    Biochem J; 2011 Mar; 434(3):391-8. PubMed ID: 21166655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.
    Iyer LM; Tahiliani M; Rao A; Aravind L
    Cell Cycle; 2009 Jun; 8(11):1698-710. PubMed ID: 19411852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the 2-oxoglutarate-dependent dioxygenases and implications for cancer.
    Vissers MC; Kuiper C; Dachs GU
    Biochem Soc Trans; 2014 Aug; 42(4):945-51. PubMed ID: 25109984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrogating the Druggability of the 2-Oxoglutarate-Dependent Dioxygenase Target Class by Chemical Proteomics.
    Joberty G; Boesche M; Brown JA; Eberhard D; Garton NS; Humphreys PG; Mathieson T; Muelbaier M; Ramsden NG; Reader V; Rueger A; Sheppard RJ; Westaway SM; Bantscheff M; Lee K; Wilson DM; Prinjha RK; Drewes G
    ACS Chem Biol; 2016 Jul; 11(7):2002-10. PubMed ID: 27197014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron- and 2-oxoglutarate-dependent dioxygenases: an emerging group of molecular targets for nickel toxicity and carcinogenicity.
    Chen H; Costa M
    Biometals; 2009 Feb; 22(1):191-6. PubMed ID: 19096759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions.
    Sugimoto K; Senda T; Aoshima H; Masai E; Fukuda M; Mitsui Y
    Structure; 1999 Aug; 7(8):953-65. PubMed ID: 10467151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-oxoglutarate-dependent dioxygenases: A renaissance in attention for ascorbic acid in plants.
    Mahmood AM; Dunwell JM
    PLoS One; 2020; 15(12):e0242833. PubMed ID: 33290424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron chelation and 2-oxoglutarate-dependent dioxygenase inhibition suppress mantle cell lymphoma's cyclin D1.
    Babosova O; Kapralova K; Raskova Kafkova L; Korinek V; Divoky V; Prchal JT; Lanikova L
    J Cell Mol Med; 2019 Nov; 23(11):7785-7795. PubMed ID: 31517438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JBP1 and JBP2 proteins are Fe2+/2-oxoglutarate-dependent dioxygenases regulating hydroxylation of thymidine residues in trypanosome DNA.
    Cliffe LJ; Hirsch G; Wang J; Ekanayake D; Bullard W; Hu M; Wang Y; Sabatini R
    J Biol Chem; 2012 Jun; 287(24):19886-95. PubMed ID: 22514282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events.
    Harrison T; Ruiz J; Sloan DB; Ben-Hur A; Boucher C
    PLoS One; 2016; 11(8):e0160645. PubMed ID: 27560805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative sequence analysis and mutagenesis of ethylene forming enzyme (EFE) 2-oxoglutarate/Fe(II)-dependent dioxygenase homologs.
    Johansson N; Persson KO; Larsson C; Norbeck J
    BMC Biochem; 2014 Oct; 15():22. PubMed ID: 25278273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. R97 at "Handlebar" Binding Mode in Active Pocket Plays an Important Role in Fe(II)/α-Ketoglutaric Acid-Dependent Dioxygenase
    Guan J; Lu Y; Dai Z; Zhao S; Xu Y; Nie Y
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of vertebrate and algal prolyl 4-hydroxylases and vertebrate lysyl hydroxylase by diethyl pyrocarbonate. Evidence for histidine residues in the catalytic site of 2-oxoglutarate-coupled dioxygenases.
    Myllylä R; Günzler V; Kivirikko KI; Kaska DD
    Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):923-7. PubMed ID: 1329722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization and mutational analysis of the mononuclear non-haem Fe2+ site in Dke1, a cupin-type dioxygenase from Acinetobacter johnsonii.
    Leitgeb S; Straganz GD; Nidetzky B
    Biochem J; 2009 Mar; 418(2):403-11. PubMed ID: 18973472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of halogen substituents and substrate pK
    Burrows JE; Paulson MQ; Altman ER; Vukovic I; Machonkin TE
    J Biol Inorg Chem; 2019 Jun; 24(4):575-589. PubMed ID: 31089822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction: Metals in Biology: α-Ketoglutarate/Iron-Dependent Dioxygenases.
    Guengerich FP
    J Biol Chem; 2015 Aug; 290(34):20700-20701. PubMed ID: 26152720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.