These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33648571)

  • 1. Life cycle greenhouse gas emissions of ethanol produced via fermentation of sugars derived from shrub willow (Salix ssp.) hot water extraction in the Northeast United States.
    Therasme O; Volk TA; Eisenbies MH; Amidon TE; Fortier MO
    Biotechnol Biofuels; 2021 Mar; 14(1):52. PubMed ID: 33648571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valuation of ecosystem services of commercial shrub willow (Salix spp.) woody biomass crops.
    Bressler A; Vidon P; Hirsch P; Volk T
    Environ Monit Assess; 2017 Apr; 189(4):137. PubMed ID: 28251452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.
    Cai H; Wang MQ
    Environ Sci Technol; 2014 Oct; 48(20):12445-53. PubMed ID: 25259852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland.
    Clarke R; Sosa A; Murphy F
    Sci Total Environ; 2019 May; 664():262-275. PubMed ID: 30743120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The environmental and economic sustainability of potential bioethanol from willow in the UK.
    Stephenson AL; Dupree P; Scott SA; Dennis JS
    Bioresour Technol; 2010 Dec; 101(24):9612-23. PubMed ID: 20727740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle assessment of a shrub willow evapotranspiration cover compared with conventional clay and geosynthetic covers in Upstate New York.
    Tariq Z; Volk TA; Therasme O
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45029-45040. PubMed ID: 33860420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of shrub willow buffers strategically integrated in an Illinois corn-soybean field on soil health and microbial community composition.
    Zumpf C; Cacho J; Grasse N; Quinn J; Hampton-Marcell J; Armstrong A; Campbell P; Negri MC; Lee DK
    Sci Total Environ; 2021 Jun; 772():145674. PubMed ID: 33663956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration.
    Gao B; Huang T; Ju X; Gu B; Huang W; Xu L; Rees RM; Powlson DS; Smith P; Cui S
    Glob Chang Biol; 2018 Dec; 24(12):5590-5606. PubMed ID: 30118572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.
    Luo D; Hu Z; Choi DG; Thomas VM; Realff MJ; Chance RR
    Environ Sci Technol; 2010 Nov; 44(22):8670-7. PubMed ID: 20968295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.).
    Carlson CH; Gouker FE; Crowell CR; Evans L; DiFazio SP; Smart CD; Smart LB
    Ann Bot; 2019 Oct; 124(4):701-716. PubMed ID: 31008500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass.
    Shylesh S; Gokhale AA; Ho CR; Bell AT
    Acc Chem Res; 2017 Oct; 50(10):2589-2597. PubMed ID: 28930430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment.
    Styles D; Börjesson P; D'Hertefeldt T; Birkhofer K; Dauber J; Adams P; Patil S; Pagella T; Pettersson LB; Peck P; Vaneeckhaute C; Rosenqvist H
    Ambio; 2016 Dec; 45(8):872-884. PubMed ID: 27240661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating biorefinery and farm biogeochemical cycles offsets fossil energy and mitigates soil carbon losses.
    Adler PR; Mitchell JG; Pourhashem G; Spatari S; Del Grosso SJ; Parton WJ
    Ecol Appl; 2015 Jun; 25(4):1142-56. PubMed ID: 26465048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel.
    Wang Z; Dunn JB; Han J; Wang MQ
    Biotechnol Biofuels; 2015; 8():178. PubMed ID: 26543502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cost and Life-Cycle Greenhouse Gas Implications of Integrating Biogas Upgrading and Carbon Capture Technologies in Cellulosic Biorefineries.
    Yang M; Baral NR; Anastasopoulou A; Breunig HM; Scown CD
    Environ Sci Technol; 2020 Oct; 54(20):12810-12819. PubMed ID: 33030339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic improvement of willow for bioenergy and biofuels.
    Karp A; Hanley SJ; Trybush SO; Macalpine W; Pei M; Shield I
    J Integr Plant Biol; 2011 Feb; 53(2):151-65. PubMed ID: 21205181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.
    Pawlowski MN; Crow SE; Meki MN; Kiniry JR; Taylor AD; Ogoshi R; Youkhana A; Nakahata M
    PLoS One; 2017; 12(1):e0168510. PubMed ID: 28052075
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.