These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 33648626)
1. Changes of lignin biosynthesis in tobacco leaves during maturation. Song Z; Wang D; Gao Y; Li C; Jiang H; Zhu X; Zhang H Funct Plant Biol; 2021 May; 48(6):624-633. PubMed ID: 33648626 [TBL] [Abstract][Full Text] [Related]
2. Expression of the human UDP-galactose transporter gene hUGT1 in tobacco plants' enhanced plant hardness. Abedi T; Khalil MFM; Koike K; Hagura Y; Tazoe Y; Ishida N; Kitamura K; Tanaka N J Biosci Bioeng; 2018 Aug; 126(2):241-248. PubMed ID: 29650365 [TBL] [Abstract][Full Text] [Related]
3. Heterogenous expression of Pyrus pyrifolia PpCAD2 and PpEXP2 in tobacco impacts lignin accumulation in transgenic plants. Wang Y; Zhang X; Yang S; Wang C; Lu G; Wang R; Yang Y; Li D Gene; 2017 Dec; 637():181-189. PubMed ID: 28964892 [TBL] [Abstract][Full Text] [Related]
4. Isolation and molecular characterization of NtMYB4a, a putative transcription activation factor involved in anthocyanin synthesis in tobacco. Luo Q; Liu R; Zeng L; Wu Y; Jiang Y; Yang Q; Nie Q Gene; 2020 Nov; 760():144990. PubMed ID: 32721476 [TBL] [Abstract][Full Text] [Related]
5. Modification of lignin biosynthesis in transgenic Nicotiana through expression of an antisense O-methyltransferase gene from Populus. Dwivedi UN; Campbell WH; Yu J; Datla RS; Bugos RC; Chiang VL; Podila GK Plant Mol Biol; 1994 Oct; 26(1):61-71. PubMed ID: 7948906 [TBL] [Abstract][Full Text] [Related]
6. Consequences of antisense down-regulation of a lignification-specific peroxidase on leaf and vascular tissue in tobacco lines demonstrating enhanced enzymic saccharification. Kavousi B; Daudi A; Cook CM; Joseleau JP; Ruel K; Devoto A; Bolwell GP; Blee KA Phytochemistry; 2010 Apr; 71(5-6):531-42. PubMed ID: 20170931 [TBL] [Abstract][Full Text] [Related]
7. CYP82E4-mediated nicotine to nornicotine conversion in tobacco is regulated by a senescence-specific signaling pathway. Chakrabarti M; Bowen SW; Coleman NP; Meekins KM; Dewey RE; Siminszky B Plant Mol Biol; 2008 Mar; 66(4):415-27. PubMed ID: 18196465 [TBL] [Abstract][Full Text] [Related]
8. Promoter analysis of the sweet potato ADP-glucose pyrophosphorylase gene IbAGP1 in Nicotiana tabacum. Zheng X; Li Q; Liu D; Zang L; Zhang K; Deng K; Yang S; Xie Z; Tang X; Qi Y; Zhang Y Plant Cell Rep; 2015 Nov; 34(11):1873-84. PubMed ID: 26183951 [TBL] [Abstract][Full Text] [Related]
9. Expression of a bacterial, phenylpropanoid-metabolizing enzyme in tobacco reveals essential roles of phenolic precursors in normal leaf development and growth. Merali Z; Mayer MJ; Parker ML; Michael AJ; Smith AC; Waldron KW Physiol Plant; 2012 Jun; 145(2):260-74. PubMed ID: 22276599 [TBL] [Abstract][Full Text] [Related]
10. Developmentally regulated patterns of expression directed by poplar PAL promoters in transgenic tobacco and poplar. Gray-Mitsumune M; Molitor EK; Cukovic D; Carlson JE; Douglas CJ Plant Mol Biol; 1999 Mar; 39(4):657-69. PubMed ID: 10350081 [TBL] [Abstract][Full Text] [Related]
11. Over-expression of poplar NAC15 gene enhances wood formation in transgenic tobacco. Yao W; Zhang D; Zhou B; Wang J; Li R; Jiang T BMC Plant Biol; 2020 Jan; 20(1):12. PubMed ID: 31914923 [TBL] [Abstract][Full Text] [Related]
12. Functional Analysis of the Marigold (Tagetes erecta) Lycopene ε-cyclase (TeLCYe) Promoter in Transgenic Tobacco. Zhang C; Wang Y; Wang W; Cao Z; Fu Q; Bao M; He Y Mol Biotechnol; 2019 Sep; 61(9):703-713. PubMed ID: 31286381 [TBL] [Abstract][Full Text] [Related]
13. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Biemelt S; Tschiersch H; Sonnewald U Plant Physiol; 2004 May; 135(1):254-65. PubMed ID: 15122040 [TBL] [Abstract][Full Text] [Related]
14. Specificity of expression of the GUS reporter gene (uidA) driven by the tobacco ASA2 promoter in soybean plants and tissue cultures. Inaba Y; Zhong WQ; Zhang XH; Widholm JM J Plant Physiol; 2007 Jul; 164(7):824-34. PubMed ID: 17223226 [TBL] [Abstract][Full Text] [Related]
15. Antisense-overexpression of the MsCOMT gene induces changes in lignin and total phenol contents in transgenic tobacco plants. Seong ES; Yoo JH; Lee JG; Kim HY; Hwang IS; Heo K; Kim JK; Lim JD; Sacks EJ; Yu CY Mol Biol Rep; 2013 Feb; 40(2):1979-86. PubMed ID: 23160900 [TBL] [Abstract][Full Text] [Related]
16. Altered lignin structure and resistance to pathogens in spi 2-expressing tobacco plants. Elfstrand M; Sitbon F; Lapierre C; Bottin A; von Arnold S Planta; 2002 Mar; 214(5):708-16. PubMed ID: 11882939 [TBL] [Abstract][Full Text] [Related]
17. rbcS SRS4 promoter from Glycine max and its expression activity in transgenic tobacco. Cui XY; Chen ZY; Wu L; Liu XQ; Dong YY; Wang FW; Li HY Genet Mol Res; 2015 Jul; 14(3):7395-405. PubMed ID: 26214418 [TBL] [Abstract][Full Text] [Related]
18. Root-specific expression of a western white pine PR10 gene is mediated by different promoter regions in transgenic tobacco. Liu JJ; Ekramoddoullah AK Plant Mol Biol; 2003 May; 52(1):103-20. PubMed ID: 12825693 [TBL] [Abstract][Full Text] [Related]
19. Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. Wu AM; Ling C; Liu JY J Plant Physiol; 2006 Mar; 163(4):426-35. PubMed ID: 16455356 [TBL] [Abstract][Full Text] [Related]
20. Li M; Cheng C; Zhang X; Zhou S; Wang C; Ma C; Yang S Molecules; 2019 Nov; 24(23):. PubMed ID: 31783586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]