These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 33648649)
1. Effect of aspect ratio on the chirality of gold nanorods prepared through conventional seed-mediated growth method. Zhou X; Liu Q; Shi X; Xu C; Li B Anal Chim Acta; 2021 Apr; 1152():338277. PubMed ID: 33648649 [TBL] [Abstract][Full Text] [Related]
2. Gold Nanorods as Visual Sensing Platform for Chiral Recognition with Naked Eyes. Wang Y; Zhou X; Xu C; Jin Y; Li B Sci Rep; 2018 Mar; 8(1):5296. PubMed ID: 29593267 [TBL] [Abstract][Full Text] [Related]
3. The aspect ratio of gold nanorods as a cytotoxicity factor on Raphidocelis subcaptata. Nogueira PFM; Marangoni VS; Zucolotto V Environ Res; 2020 Dec; 191():110133. PubMed ID: 32871150 [TBL] [Abstract][Full Text] [Related]
4. Controlled etching and tapering of Au nanorods using cysteamine. Szychowski B; Leng H; Pelton M; Daniel MC Nanoscale; 2018 Sep; 10(35):16830-16838. PubMed ID: 30167608 [TBL] [Abstract][Full Text] [Related]
5. Chemical Transformation of Nanorods to Nanowires: Reversible Growth and Dissolution of Anisotropic Gold Nanostructures. Khanal BP; Zubarev ER ACS Nano; 2019 Feb; 13(2):2370-2378. PubMed ID: 30753055 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and Characterization of Gold Chiral Nanoparticles Functionalized by a Chiral Drug. Bettini S; Ottolini M; Valli D; Pagano R; Ingrosso C; Roeffaers M; Hofkens J; Valli L; Giancane G Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177071 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods. Li JJ; Qiao D; Zhao J; Weng GJ; Zhu J; Zhao JW Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():247-255. PubMed ID: 30947133 [TBL] [Abstract][Full Text] [Related]
8. Visual chiral recognition of D/L-leucine using cube-shaped gold nanoparticles as colorimetric probes. Zhou X; Xu C; Jin Y; Li B Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117263. PubMed ID: 31247465 [TBL] [Abstract][Full Text] [Related]
9. Effect of Growth Temperature on Tailoring the Size and Aspect Ratio of Gold Nanorods. Liu X; Yao J; Luo J; Duan X; Yao Y; Liu T Langmuir; 2017 Aug; 33(30):7479-7485. PubMed ID: 28696699 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of Supported and Unsupported Gold Nanorods for Nonenzymatic Glucose Sensing and Study of Their Growth Kinetics. Sabahat S; Nazish Y; Saira F; Tariq I; Khan ZUH; Saleem RSZ; Abdullah MMS; Chen YM ACS Omega; 2024 Aug; 9(31):33616-33628. PubMed ID: 39130546 [TBL] [Abstract][Full Text] [Related]
11. PEGylated gold nanorods as optical trackers for biomedical applications: an in vivo and in vitro comparative study. Abdelrasoul GN; Magrassi R; Dante S; d'Amora M; d'Abbusco MS; Pellegrino T; Diaspro A Nanotechnology; 2016 Jun; 27(25):255101. PubMed ID: 27176116 [TBL] [Abstract][Full Text] [Related]
12. Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations. Peixoto LPF; Santos JFL; Andrade GFS Anal Chim Acta; 2019 Nov; 1084():71-77. PubMed ID: 31519236 [TBL] [Abstract][Full Text] [Related]
13. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy. Zhu H; Chen Y; Yan FJ; Chen J; Tao XF; Ling J; Yang B; He QJ; Mao ZW Acta Biomater; 2017 Mar; 50():534-545. PubMed ID: 28027959 [TBL] [Abstract][Full Text] [Related]
14. Protein fibril assisted chiral assembly of gold nanorods. Thomas AR; Swetha K; C K A; Ashraf R; Kumar J; Kumar S; Mandal SS J Mater Chem B; 2022 Aug; 10(33):6360-6371. PubMed ID: 35946470 [TBL] [Abstract][Full Text] [Related]
16. Significance of surface functionalization of Gold Nanorods for reduced effect on IgG stability and minimization of cytotoxicity. Alex SA; Rajiv S; Chakravarty S; Chandrasekaran N; Mukherjee A Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():744-754. PubMed ID: 27987768 [TBL] [Abstract][Full Text] [Related]
17. Seed-Mediated Growth and Advanced Characterization of Chiral Gold Nanorods. Ni B; González-Rubio G; Van Gordon K; Bals S; Kotov NA; Liz-Marzán LM Adv Mater; 2024 Oct; ():e2412473. PubMed ID: 39380379 [TBL] [Abstract][Full Text] [Related]
18. Seed-Mediated Synthesis of Gold Nanorods at Low Concentrations of CTAB. Wei MZ; Deng TS; Zhang Q; Cheng Z; Li S ACS Omega; 2021 Apr; 6(13):9188-9195. PubMed ID: 33842787 [TBL] [Abstract][Full Text] [Related]
19. Combined Facile Synthesis, Purification, and Surface Functionalization Approach Yields Monodispersed Gold Nanorods for Drug Delivery Applications. Han S; Al-Jamal KT Part Part Syst Charact; 2023 Oct; 40(10):2300043. PubMed ID: 38213764 [TBL] [Abstract][Full Text] [Related]
20. A Colorimetric Probe Based on Functionalized Gold Nanorods for Sensitive and Selective Detection of As(III) Ions. Ge K; Liu J; Fang G; Wang P; Zhang D; Wang S Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]