These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3364887)

  • 1. The neurobiology of cerebellar senescence.
    Rogers J
    Ann N Y Acad Sci; 1988; 515():251-68. PubMed ID: 3364887
    [No Abstract]   [Full Text] [Related]  

  • 2. Afferent-target interactions during olivocerebellar development: transcommissural reinnervation indicates interdependence of Purkinje cell maturation and climbing fibre synapse elimination.
    Lohof AM; Mariani J; Sherrard RM
    Eur J Neurosci; 2005 Dec; 22(11):2681-8. PubMed ID: 16324102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs.
    Holtzman T; Rajapaksa T; Mostofi A; Edgley SA
    J Physiol; 2006 Jul; 574(Pt 2):491-507. PubMed ID: 16709640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Reactions of the frog cerebellar granular cells to stimulation of different afferent pathways].
    Fam-Khyu-Khoan ; Butiaeva VV
    Fiziol Zh SSSR Im I M Sechenova; 1973 Apr; 59(3):524-30. PubMed ID: 4746206
    [No Abstract]   [Full Text] [Related]  

  • 5. Aging of cerebellar Purkinje cells.
    Zhang C; Zhu Q; Hua T
    Cell Tissue Res; 2010 Sep; 341(3):341-7. PubMed ID: 20652318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous synapses upon Purkinje cells in the cerebellum of the Reeler mutant mouse: an experimental light and electron microscopic study.
    Wilson L; Sotelo C; Caviness VS
    Brain Res; 1981 May; 213(1):63-82. PubMed ID: 7237151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal interactions in frog cerebellum.
    Bloedel JR; Llinas R
    J Neurophysiol; 1969 Nov; 32(6):871-80. PubMed ID: 4310506
    [No Abstract]   [Full Text] [Related]  

  • 8. Observation of the highly organized development of granule cells in rat cerebellar organotypic cultures.
    Tanaka M; Tomita A; Yoshida S; Yano M; Shimizu H
    Brain Res; 1994 Apr; 641(2):319-27. PubMed ID: 8012835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GOLGI cells of the cerebellum of the dogfish, Scyliorhinus canicula (elasmobranchs): a GOLGI and ultrastructural study.
    Alvarez-Otero R; Anadón R
    J Hirnforsch; 1992; 33(3):321-7. PubMed ID: 1281857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Recent progress in cerebellar physiology (author's transl)].
    Ito M
    No Shinkei Geka; 1979 Sep; 7(9):827-33. PubMed ID: 226901
    [No Abstract]   [Full Text] [Related]  

  • 11. The puzzle of ploidy of Purkinje neurons.
    Del Monte U
    Cerebellum; 2006; 5(1):23-6. PubMed ID: 16527760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of difference between potentials evoked by climbing fibers in cerebellum of cat and turtle.
    Bantli H
    J Neurophysiol; 1974 Jul; 37(4):573-93. PubMed ID: 4837769
    [No Abstract]   [Full Text] [Related]  

  • 13. Morphological correlates of cerebellar Purkinje cell activity.
    Desclin JC; Colin F; Manil J
    Prog Clin Biol Res; 1981; 59A():269-77. PubMed ID: 7301844
    [No Abstract]   [Full Text] [Related]  

  • 14. Postnatal maturation of rat Purkinje cells cultivated in the absence of two afferent systems: an ultrastructural study.
    Privat A; Drian MJ
    J Comp Neurol; 1976 Mar; 166(2):201-43. PubMed ID: 1262555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of synapses in the molecular layer of the cerebellum of the cat (a Golgi and electron microscopic study).
    Malínský J; Malínská J; Eber M
    Acta Univ Palacki Olomuc Fac Med; 1989; 123():55-78. PubMed ID: 2533846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of cerebellar climbing fibre activity by stimulation of precruciate cortex.
    Leicht R; Roowe MJ; Schmidt RF
    Brain Res; 1972 Aug; 43(2):640-4. PubMed ID: 4340839
    [No Abstract]   [Full Text] [Related]  

  • 17. Quantitative studies in ageing Chbb:THOM (Wistar) rats. II. Neuron numbers in lobules I, VIb + c and X.
    Drüge H; Heinsen H; Heinsen YL
    Bibl Anat; 1986; (28):121-37. PubMed ID: 3707510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of temperature on spontaneous bioelectric activity of cultured nerve cells.
    Gahwiler BH; Mamoon AM; Schlapfer WT; Tobias CA
    Brain Res; 1972 May; 40(2):527-33. PubMed ID: 5027177
    [No Abstract]   [Full Text] [Related]  

  • 19. Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum.
    Suzuki DA; Noda H; Kase M
    J Neurophysiol; 1981 Nov; 46(5):1120-39. PubMed ID: 7299450
    [No Abstract]   [Full Text] [Related]  

  • 20. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum.
    Shidara M; Kawano K; Gomi H; Kawato M
    Nature; 1993 Sep; 365(6441):50-2. PubMed ID: 8361536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.