These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33649638)

  • 21. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens.
    Shen X; Wang YJ; Chen HS; Xiao X; Lin YH; Javidi B
    Opt Lett; 2015 Feb; 40(4):538-41. PubMed ID: 25680144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 360-degree directional micro prism array for tabletop flat-panel light field displays.
    Yu X; Dong H; Gao X; Fu B; Pei X; Zhao S; Yan B; Sang X
    Opt Express; 2023 Sep; 31(20):32273-32286. PubMed ID: 37859034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Depth of focus and visual recognition of imagery presented on simultaneously viewed displays: implications for head-mounted displays.
    Winterbottom MD; Patterson R; Pierce BJ; Covas CM; Winner J
    Hum Factors; 2007 Oct; 49(5):907-19. PubMed ID: 17915606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-Division Multiplexing Light Field Display with Learned Coded Aperture.
    Chao CH; Liu CL; Chen HH
    IEEE Trans Image Process; 2022 Dec; PP():. PubMed ID: 37015682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D head-up display with a multiple extended depth of field based on integral imaging and holographic optical elements.
    Lv Z; Li J; Yang Y; Liu J
    Opt Express; 2023 Jan; 31(2):964-975. PubMed ID: 36785143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resolution-enhanced integral imaging using two micro-lens arrays with different focal lengths for capturing and display.
    Wang Z; Wang A; Wang S; Ma X; Ming H
    Opt Express; 2015 Nov; 23(22):28970-7. PubMed ID: 26561165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light field display with near virtual-image mode.
    Fukano K; Kudo T; Yura T; Takaki Y
    Opt Express; 2022 Mar; 30(6):8409-8424. PubMed ID: 35299294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of a polarized head-mounted projection display using ferroelectric liquid-crystal-on-silicon microdisplays.
    Zhang R; Hua H
    Appl Opt; 2008 May; 47(15):2888-96. PubMed ID: 18493297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Concept of dual-resolution light field imaging using an organic photoelectric conversion film for high-resolution light field photography.
    Sugimura D; Kobayashi S; Hamamoto T
    Appl Opt; 2017 Nov; 56(31):8687-8698. PubMed ID: 29091683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bifocal computational near eye light field displays and Structure parameters determination scheme for bifocal computational display.
    Liu M; Lu C; Li H; Liu X
    Opt Express; 2018 Feb; 26(4):4060-4074. PubMed ID: 29475261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homography based identification for automatic and robust calibration of projection integral imaging displays.
    Jorissen L; Jackin BJ; Oi R; Wakunami K; Okui M; Ichihashi Y; Lafruit G; Yamamoto K; Bekaert P
    Appl Opt; 2019 Feb; 58(4):1200-1209. PubMed ID: 30874172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes.
    Jang JS; Javidi B
    Opt Lett; 2003 Oct; 28(20):1924-6. PubMed ID: 14587777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of multiple light sources to enhance the resolution of point light source displays.
    Baasantseren G; Cao Y; Dalkhaa NE
    Appl Opt; 2021 Oct; 60(29):9213-9218. PubMed ID: 34624004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parameter optimization method for light field 3D display.
    Ma H; Yao J; Gao Y; Liu J
    Opt Express; 2023 Dec; 31(25):42206-42217. PubMed ID: 38087599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance characterization of integral imaging systems based on human vision.
    Wang X; He L; Bu Q
    Appl Opt; 2009 Jan; 48(2):183-8. PubMed ID: 19137027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved resolution three-dimensional integral imaging using optimized irregular lens-array structure.
    Kavehvash Z; Mehrany K; Bagheri S
    Appl Opt; 2012 Sep; 51(25):6031-7. PubMed ID: 22945149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of a micro-lens array for improving depth-of-field of integral imaging 3D display.
    Peng Y; Zhou X; Zhang Y; Guo T
    Appl Opt; 2020 Oct; 59(29):9104-9107. PubMed ID: 33104619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.
    Gul MSK; Gunturk BK
    IEEE Trans Image Process; 2018 May; 27(5):2146-2159. PubMed ID: 29432097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Miniaturized 3D Depth Sensing-Based Smartphone Light Field Camera.
    Kim HM; Kim MS; Lee GJ; Jang HJ; Song YM
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32283826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.