These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33649638)

  • 41. A flipping-free 3D integral imaging display using a twice-imaging lens array.
    Zhang W; Sang X; Gao X; Yu X; Gao C; Yan B; Yu C
    Opt Express; 2019 Oct; 27(22):32810-32822. PubMed ID: 31684486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional gradient index microlens arrays for light-field and holographic imaging and displays.
    Williams GM; Dupuy C; Brown J; Grimm S; Akhavan H; Paul Harmon J
    Appl Opt; 2023 May; 62(14):3710-3723. PubMed ID: 37706989
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays.
    Martínez-Corral M; Javidi B; Martínez-Cuenca R; Saavedra G
    Appl Opt; 2004 Nov; 43(31):5806-13. PubMed ID: 15540438
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Maximum Likelihood Approach for Depth Field Estimation Based on Epipolar Plane Images.
    Neri A; Carli M; Battisti F
    IEEE Trans Image Process; 2019 Feb; 28(2):827-840. PubMed ID: 30307857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improvement method of integral imaging quality based on an aperture-tunable lens array.
    Zhang J; Wang X; Chen Y; Yu S; Zhang Q; Li Z
    Appl Opt; 2014 Sep; 53(25):5654-9. PubMed ID: 25321360
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel prototype for an optical see-through head-mounted display with addressable focus cues.
    Liu S; Hua H; Cheng D
    IEEE Trans Vis Comput Graph; 2010; 16(3):381-93. PubMed ID: 20224134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses.
    Zhan T; Lee YH; Wu ST
    Opt Express; 2018 Feb; 26(4):4863-4872. PubMed ID: 29475331
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Depth plane adaptive integral imaging system using a vari-focal liquid lens array for realizing augmented reality.
    Shin D; Kim C; Koo G; Hyub Won Y
    Opt Express; 2020 Feb; 28(4):5602-5616. PubMed ID: 32121777
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resolution-enhanced integral imaging microscopy that uses lens array shifting.
    Lim YT; Park JH; Kwon KC; Kim N
    Opt Express; 2009 Oct; 17(21):19253-63. PubMed ID: 20372662
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-Identical Numerical Aperture, Multifocal Microlens Array through Single-Step Multi-Sized Hole Patterning Photolithography.
    Lee JH; Chang S; Kim MS; Kim YJ; Kim HM; Song YM
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33266141
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of the lens-array structure for performance improvement of integral imaging.
    Kavehvash Z; Mehrany K; Bagheri S
    Opt Lett; 2011 Oct; 36(20):3993-5. PubMed ID: 22002363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fast-response switchable lens for 3D and wearable displays.
    Lee YH; Peng F; Wu ST
    Opt Express; 2016 Jan; 24(2):1668-75. PubMed ID: 26832545
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Partially light-controlled imaging system based on High Temperature Poly-Silicon Thin Film Transistor-Liquid Crystal Display.
    Tang Y; Zhang R; Gao H; Liu K; Zhao G; Yang X; Li Q; Liang Y; Ye N; Liu H; Liu S
    Opt Express; 2010 May; 18(10):10616-26. PubMed ID: 20588914
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array.
    Kwon KC; Lim YT; Shin CW; Erdenebat MU; Hwang JM; Kim N
    Opt Lett; 2017 Aug; 42(16):3209-3212. PubMed ID: 28809910
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical implementation of micro-zoom arrays for parallel focusing in integral imaging.
    Tolosa A; Martínez-Cuenca R; Pons A; Saavedra G; Martínez-Corral M; Javidi B
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):495-500. PubMed ID: 20208940
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Motion parallax enhanced 3-D integral imaging display from the commercial plenoptic camera.
    Ai L; Shi X; Wang X; Cao H; Wang S
    Opt Express; 2020 Oct; 28(21):31127-31139. PubMed ID: 33115094
    [TBL] [Abstract][Full Text] [Related]  

  • 57. See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element.
    Jang C; Hong K; Yeom J; Lee B
    Opt Express; 2014 Nov; 22(23):27958-67. PubMed ID: 25402036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatial resolution enhancement with line-scan light-field imaging.
    Shi S; Yu C; Zhou H; Wang R; Zhao Z; Ji Y; New TH; Qi F
    Opt Lett; 2023 Oct; 48(20):5316-5319. PubMed ID: 37831856
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Aperture-Ratio Dual-View Integral Imaging Display.
    Zhao BC; Yang F; Wu F
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extended depth of field of an imaging system with an annular aperture.
    Hildén P; Shevchenko A
    Opt Express; 2023 Mar; 31(7):11102-11115. PubMed ID: 37155753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.