These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Daytime HyWFS approach for daylight adaptive optics wavefront sensing. Huang L; Yao K; Chen L; Wang J; Liu Y Opt Express; 2024 Feb; 32(4):5996-6010. PubMed ID: 38439313 [TBL] [Abstract][Full Text] [Related]
3. Visible pyramid wavefront sensing approach for daylight adaptive optics. Huang L; Wang J; Chen L; Yuan H; Li H; Yao K Opt Express; 2022 Mar; 30(7):10833-10849. PubMed ID: 35473041 [TBL] [Abstract][Full Text] [Related]
4. Wave-front sensing from subdivision of the focal plane with a lenslet array. Clare RM; Lane RG J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):117-25. PubMed ID: 15669622 [TBL] [Abstract][Full Text] [Related]
5. Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method. Shinto H; Saita Y; Nomura T Appl Opt; 2016 Jul; 55(20):5413-8. PubMed ID: 27409319 [TBL] [Abstract][Full Text] [Related]
6. Measuring phase errors in the presence of scintillation. Crepp JR; Letchev SO; Potier SJ; Follansbee JH; Tusay NT Opt Express; 2020 Dec; 28(25):37721-37733. PubMed ID: 33379601 [TBL] [Abstract][Full Text] [Related]
7. Variation around a pyramid theme: optical recombination and optimal use of photons. Fauvarque O; Neichel B; Fusco T; Sauvage JF Opt Lett; 2015 Aug; 40(15):3528-31. PubMed ID: 26258349 [TBL] [Abstract][Full Text] [Related]
8. Concept for a laser guide beacon Shack-Hartmann wave-front sensor with dynamically steered subapertures. Baranec CJ; Bauman BJ; Lloyd-Hart M Opt Lett; 2005 Apr; 30(7):693-5. PubMed ID: 15832908 [TBL] [Abstract][Full Text] [Related]
9. Shack-Hartmann wavefront sensor with large dynamic range. Xia M; Li C; Hu L; Cao Z; Mu Q; Xuan L J Biomed Opt; 2010; 15(2):026009. PubMed ID: 20459254 [TBL] [Abstract][Full Text] [Related]
10. Algorithm to increase the largest aberration that can be reconstructed from Hartmann sensor measurements. Roggemann MC; Schulz TJ Appl Opt; 1998 Jul; 37(20):4321-9. PubMed ID: 18285881 [TBL] [Abstract][Full Text] [Related]
11. Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations. Aftab M; Choi H; Liang R; Kim DW Opt Express; 2018 Dec; 26(26):34428-34441. PubMed ID: 30650864 [TBL] [Abstract][Full Text] [Related]
12. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics. Nicolle M; Fusco T; Rousset G; Michau V Opt Lett; 2004 Dec; 29(23):2743-5. PubMed ID: 15605491 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor. Salmon TO; Thibos LN; Bradley A J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2457-65. PubMed ID: 9729857 [TBL] [Abstract][Full Text] [Related]
14. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor. Lee J; Shack RV; Descour MR Appl Opt; 2005 Aug; 44(23):4838-45. PubMed ID: 16114520 [TBL] [Abstract][Full Text] [Related]
15. Centroid gain compensation in Shack-Hartmann adaptive optics systems with natural or laser guide star. Veran JP; Herriot G J Opt Soc Am A Opt Image Sci Vis; 2000 Aug; 17(8):1430-9. PubMed ID: 10935871 [TBL] [Abstract][Full Text] [Related]
20. Measuring seeing with a Shack-Hartmann wave-front sensor during an active-optics experiment. Zhang Y; Yang D; Cui X Appl Opt; 2004 Feb; 43(4):729-34. PubMed ID: 14960062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]