These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33649684)

  • 1. Ultrasound liquid crystal lens with enlarged aperture using traveling waves.
    Onaka J; Iwase T; Fukui M; Koyama D; Matsukawa M
    Opt Lett; 2021 Mar; 46(5):1169-1172. PubMed ID: 33649684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound liquid crystal lens with a variable focus in the radial direction for image stabilization.
    Onaka J; Iwase T; Emoto A; Koyama D; Matsukawa M
    Appl Opt; 2021 Nov; 60(33):10365-10371. PubMed ID: 34807045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large aperture tunable-focus liquid lens using shape memory alloy spring.
    Hasan N; Kim H; Mastrangelo CH
    Opt Express; 2016 Jun; 24(12):13334-42. PubMed ID: 27410350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-crystal intraocular adaptive lens with wireless control.
    Simonov AN; Vdovin G; Loktev M
    Opt Express; 2007 Jun; 15(12):7468-78. PubMed ID: 19547070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Varifocal Concave-Convex Lens Using Viscoelastic Gel and Ultrasound Vibration.
    Hashimoto S; Harada Y; Nakamura K; Iwase T; Onaka J; Matsukawa M; Koyama D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Sep; 69(9):2703-2710. PubMed ID: 35905066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved low-optical-power variable focus lens with a large aperture.
    Wang L; Oku H; Ishikawa M
    Opt Express; 2014 Aug; 22(16):19448-56. PubMed ID: 25321028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid crystal lens array with positive and negative focal lengths.
    Feng W; Liu Z; Ye M
    Opt Express; 2022 Aug; 30(16):28941-28953. PubMed ID: 36299080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid crystal lens with a shiftable optical axis.
    Feng W; Liu Z; Ye M
    Opt Express; 2023 May; 31(10):15523-15536. PubMed ID: 37157652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hartmann wave-front scanner.
    Laude V; Olivier S; Dirson C; Huignard JP
    Opt Lett; 1999 Dec; 24(24):1796-8. PubMed ID: 18079934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cubic optical elements for an accommodative intraocular lens.
    Simonov AN; Vdovin G; Rombach MC
    Opt Express; 2006 Aug; 14(17):7757-75. PubMed ID: 19529146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical path difference microscopy with a Shack-Hartmann wavefront sensor.
    Gong H; Agbana TE; Pozzi P; Soloviev O; Verhaegen M; Vdovin G
    Opt Lett; 2017 Jun; 42(11):2122-2125. PubMed ID: 28569861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrowetting lens with large aperture and focal length tunability.
    Song X; Zhang H; Li D; Jia D; Liu T
    Sci Rep; 2020 Oct; 10(1):16318. PubMed ID: 33004850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algorithm and experiment of whole-aperture wavefront reconstruction from annular subaperture Hartmann-Shack gradient data.
    Xu H; Xian H; Zhang Y
    Opt Express; 2010 Jun; 18(13):13431-43. PubMed ID: 20588474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Orientation in a Variable-Focus Liquid Crystal Lens Induced by Ultrasound Vibration.
    Harada Y; Koyama D; Fukui M; Emoto A; Nakamura K; Matsukawa M
    Sci Rep; 2020 Apr; 10(1):6168. PubMed ID: 32277091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large aperture liquid crystal lens with an imbedded floating ring electrode.
    Hsu CJ; Jhang JJ; Huang CY
    Opt Express; 2016 Jul; 24(15):16722-31. PubMed ID: 27464126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and wavefront characterization of an electrically tunable aspherical optofluidic lens.
    Mishra K; Narayanan A; Mugele F
    Opt Express; 2019 Jun; 27(13):17601-17609. PubMed ID: 31252717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable Shack-Hartmann sensor without moving elements.
    Martínez-Cuenca R; Durán V; Climent V; Tajahuerce E; Bará S; Ares J; Arines J; Martínez-Corral M; Lancis J
    Opt Lett; 2010 May; 35(9):1338-40. PubMed ID: 20436561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lorentz Force Actuated Tunable-Focus Liquid Lens.
    Van Grinsven KL; Ousati Ashtiani A; Jiang H
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31652548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.
    Wang YJ; Shen X; Lin YH; Javidi B
    Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.