These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 33649692)
1. Adaptive mesh refinement and coarsening for diffusion-reaction epidemiological models. Grave M; Coutinho ALGA Comput Mech; 2021; 67(4):1177-1199. PubMed ID: 33649692 [TBL] [Abstract][Full Text] [Related]
2. Simulating the spread of COVID-19 Viguerie A; Lorenzo G; Auricchio F; Baroli D; Hughes TJR; Patton A; Reali A; Yankeelov TE; Veneziani A Appl Math Lett; 2021 Jan; 111():106617. PubMed ID: 32834475 [TBL] [Abstract][Full Text] [Related]
3. Assessing the Spatio-temporal Spread of COVID-19 via Compartmental Models with Diffusion in Italy, USA, and Brazil. Grave M; Viguerie A; Barros GF; Reali A; Coutinho ALGA Arch Comput Methods Eng; 2021; 28(6):4205-4223. PubMed ID: 34335018 [TBL] [Abstract][Full Text] [Related]
4. Delay differential equations for the spatially resolved simulation of epidemics with specific application to COVID-19. Guglielmi N; Iacomini E; Viguerie A Math Methods Appl Sci; 2022 May; 45(8):4752-4771. PubMed ID: 35464828 [TBL] [Abstract][Full Text] [Related]
5. Dynamic mode decomposition in adaptive mesh refinement and coarsening simulations. Barros GF; Grave M; Viguerie A; Reali A; Coutinho ALGA Eng Comput; 2022; 38(5):4241-4268. PubMed ID: 34366524 [TBL] [Abstract][Full Text] [Related]
6. Epidemiological Predictive Modeling of COVID-19 Infection: Development, Testing, and Implementation on the Population of the Benelux Union. Šušteršič T; Blagojević A; Cvetković D; Cvetković A; Lorencin I; Šegota SB; Milovanović D; Baskić D; Car Z; Filipović N Front Public Health; 2021; 9():727274. PubMed ID: 34778171 [TBL] [Abstract][Full Text] [Related]
7. Reaction-diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples. Kevrekidis PG; Cuevas-Maraver J; Drossinos Y; Rapti Z; Kevrekidis GA Phys Rev E; 2021 Aug; 104(2-1):024412. PubMed ID: 34525669 [TBL] [Abstract][Full Text] [Related]
8. Modeling nonlocal behavior in epidemics via a reaction-diffusion system incorporating population movement along a network. Grave M; Viguerie A; Barros GF; Reali A; Andrade RFS; Coutinho ALGA Comput Methods Appl Mech Eng; 2022 Nov; 401():115541. PubMed ID: 36124053 [TBL] [Abstract][Full Text] [Related]
9. Diffusion-reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study. Viguerie A; Veneziani A; Lorenzo G; Baroli D; Aretz-Nellesen N; Patton A; Yankeelov TE; Reali A; Hughes TJR; Auricchio F Comput Mech; 2020; 66(5):1131-1152. PubMed ID: 32836602 [TBL] [Abstract][Full Text] [Related]
10. Mathematical Modelling of the Spatial Distribution of a COVID-19 Outbreak with Vaccination Using Diffusion Equation. Kammegne B; Oshinubi K; Babasola O; Peter OJ; Longe OB; Ogunrinde RB; Titiloye EO; Abah RT; Demongeot J Pathogens; 2023 Jan; 12(1):. PubMed ID: 36678436 [TBL] [Abstract][Full Text] [Related]
11. A stochastic metapopulation state-space approach to modeling and estimating COVID-19 spread. Tan Y; Iii DC; Ndeffo-Mbah M; Braga-Neto U Math Biosci Eng; 2021 Sep; 18(6):7685-7710. PubMed ID: 34814270 [TBL] [Abstract][Full Text] [Related]
12. Epidemic modeling with heterogeneity and social diffusion. Berestycki H; Desjardins B; Weitz JS; Oury JM J Math Biol; 2023 Mar; 86(4):60. PubMed ID: 36964799 [TBL] [Abstract][Full Text] [Related]
13. Prediction of COVID-19 Trend in India and Its Four Worst-Affected States Using Modified SEIRD and LSTM Models. Bedi P; Dhiman S; Gole P; Gupta N; Jindal V SN Comput Sci; 2021; 2(3):224. PubMed ID: 33899004 [TBL] [Abstract][Full Text] [Related]
14. A generalized differential equation compartmental model of infectious disease transmission. Greenhalgh S; Rozins C Infect Dis Model; 2021; 6():1073-1091. PubMed ID: 34585030 [TBL] [Abstract][Full Text] [Related]
15. Scalable computational algorithms for geospatial COVID-19 spread using high performance computing. Sharma S; Dolean V; Jolivet P; Robinson B; Edwards JD; Kendzerska T; Sarkar A Math Biosci Eng; 2023 Jul; 20(8):14634-14674. PubMed ID: 37679152 [TBL] [Abstract][Full Text] [Related]
16. The spreading of Covid-19 in Mexico: A diffusional approach. Aguilar-Madera CG; Espinosa-Paredes G; Herrera-Hernández EC; Briones Carrillo JA; Valente Flores-Cano J; Matías-Pérez V Results Phys; 2021 Aug; 27():104555. PubMed ID: 34312590 [TBL] [Abstract][Full Text] [Related]
18. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
19. A fractional mathematical model with nonlinear partial differential equations for transmission dynamics of severe acute respiratory syndrome coronavirus 2 infection. Thabet H; Kendre S Healthc Anal (N Y); 2023 Dec; 4():100209. PubMed ID: 37377904 [TBL] [Abstract][Full Text] [Related]
20. Modelling the spatial spread of COVID-19 in a German district using a diffusion model. Schäfer M; Heidrich P; Götz T Math Biosci Eng; 2023 Nov; 20(12):21246-21266. PubMed ID: 38124596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]