These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33649693)

  • 1. A digital twin-driven human-robot collaborative assembly approach in the wake of COVID-19.
    Lv Q; Zhang R; Sun X; Lu Y; Bao J
    J Manuf Syst; 2021 Jul; 60():837-851. PubMed ID: 33649693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital Twin-Driven Human Robot Collaboration Using a Digital Human.
    Maruyama T; Ueshiba T; Tada M; Toda H; Endo Y; Domae Y; Nakabo Y; Mori T; Suita K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Framework for Controlling Work Sequence in Collaborative Human-Robot Assembly Processes.
    Garcia PP; Santos TG; Machado MA; Mendes N
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A digital twin-driven flexible scheduling method in a human-machine collaborative workshop based on hierarchical reinforcement learning.
    Zhang R; Lv J; Bao J; Zheng Y
    Flex Serv Manuf J; 2023 May; ():1-23. PubMed ID: 37363699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-Robot Collaborations in Smart Manufacturing Environments: Review and Outlook.
    Othman U; Yang E
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital Twin for a Multifunctional Technology of Flexible Assembly on a Mechatronics Line with Integrated Robotic Systems and Mobile Visual Sensor-Challenges towards Industry 5.0.
    Mincă E; Filipescu A; Cernega D; Șolea R; Filipescu A; Ionescu D; Simion G
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital twin-based multi-level task rescheduling for robotic assembly line.
    Yao B; Xu W; Shen T; Ye X; Tian S
    Sci Rep; 2023 Jan; 13(1):1769. PubMed ID: 36720967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot grasping method optimization using improved deep deterministic policy gradient algorithm of deep reinforcement learning.
    Zhang H; Wang F; Wang J; Cui B
    Rev Sci Instrum; 2021 Feb; 92(2):025114. PubMed ID: 33648152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Framework for the Optimization of the Human-Robot Collaboration Decision-Making Process Through the Ability to Change Performance Metrics.
    Hani Daniel Zakaria M; Lengagne S; Corrales Ramón JA; Mezouar Y
    Front Robot AI; 2021; 8():736644. PubMed ID: 34760932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What about the human in human robot collaboration?
    Baltrusch SJ; Krause F; de Vries AW; van Dijk W; de Looze MP
    Ergonomics; 2022 May; 65(5):719-740. PubMed ID: 34546152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Resilient and Effective Task Scheduling Approach for Industrial Human-Robot Collaboration.
    Pupa A; Van Dijk W; Brekelmans C; Secchi C
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital Twin for a Collaborative Painting Robot.
    Chancharoen R; Chaiprabha K; Wuttisittikulkij L; Asdornwised W; Saadi M; Phanomchoeng G
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cooperative Shared Control Scheme Based on Intention Recognition for Flexible Assembly Manufacturing.
    Zhou G; Luo J; Xu S; Zhang S
    Front Neurorobot; 2022; 16():850211. PubMed ID: 35370590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic Assembly of Timber Structures in a Human-Robot Collaboration Setup.
    Kramberger A; Kunic A; Iturrate I; Sloth C; Naboni R; Schlette C
    Front Robot AI; 2021; 8():768038. PubMed ID: 35155587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital-Twin-Assisted Skill Learning for 3C Assembly Tasks.
    Sun F; Liu N; Wang X; Sun R; Miao S; Kang Z; Fang B; Liu H; Zhao Y; Huang H
    IEEE Trans Cybern; 2024 Jul; 54(7):3852-3863. PubMed ID: 38578861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward an Interactive Reinforcement Based Learning Framework for Human Robot Collaborative Assembly Processes.
    Akkaladevi SC; Plasch M; Maddukuri S; Eitzinger C; Pichler A; Rinner B
    Front Robot AI; 2018; 5():126. PubMed ID: 33501005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Modular Digital Twinning Framework for Safety Assurance of Collaborative Robotics.
    Douthwaite JA; Lesage B; Gleirscher M; Calinescu R; Aitken JM; Alexander R; Law J
    Front Robot AI; 2021; 8():758099. PubMed ID: 34977162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards next generation digital twin in robotics: Trends, scopes, challenges, and future.
    Mazumder A; Sahed MF; Tasneem Z; Das P; Badal FR; Ali MF; Ahamed MH; Abhi SH; Sarker SK; Das SK; Hasan MM; Islam MM; Islam MR
    Heliyon; 2023 Feb; 9(2):e13359. PubMed ID: 36825188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An enhanced deep deterministic policy gradient algorithm for intelligent control of robotic arms.
    Dong R; Du J; Liu Y; Heidari AA; Chen H
    Front Neuroinform; 2023; 17():1096053. PubMed ID: 36756212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.