BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 33649757)

  • 1. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms.
    Hasselbalch HC; Elvers M; Schafer AI
    Blood; 2021 Apr; 137(16):2152-2160. PubMed ID: 33649757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thrombotic, Vascular, and Bleeding Complications of the Myeloproliferative Neoplasms.
    Schafer AI
    Hematol Oncol Clin North Am; 2021 Apr; 35(2):305-324. PubMed ID: 33641871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms.
    Rungjirajittranon T; Owattanapanich W; Ungprasert P; Siritanaratkul N; Ruchutrakool T
    BMC Cancer; 2019 Feb; 19(1):184. PubMed ID: 30819138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platelets as Mediators of Thromboinflammation in Chronic Myeloproliferative Neoplasms.
    Marin Oyarzún CP; Heller PG
    Front Immunol; 2019; 10():1373. PubMed ID: 31258539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mean platelet volume and risk of thrombotic and bleeding complications in patients with Philadelphia chromosome negative myeloproliferative neoplasms.
    Krashin E; Cohen O; Pereg D; Lishner M; Leader A
    Blood Coagul Fibrinolysis; 2018 Apr; 29(3):288-293. PubMed ID: 29474204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thrombotic and bleeding complications in classical myeloproliferative neoplasms.
    McMahon B; Stein BL
    Semin Thromb Hemost; 2013 Feb; 39(1):101-11. PubMed ID: 23264112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Pathophysiological Mechanisms of Thrombosis in Myeloproliferative Neoplasms.
    Reeves BN; Beckman JD
    Curr Hematol Malig Rep; 2021 Jun; 16(3):304-313. PubMed ID: 33876389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thrombosis in myeloproliferative neoplasms with JAK2V617F mutation.
    Sun T; Zhang L
    Clin Appl Thromb Hemost; 2013; 19(4):374-81. PubMed ID: 22826442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of leukocytes in myeloproliferative neoplasm thromboinflammation.
    Liu Y; Wang Y; Huang G; Wu S; Liu X; Chen S; Luo P; Liu C; Zuo X
    J Leukoc Biol; 2024 May; 115(6):1020-1028. PubMed ID: 38527797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thromboinflammation in Myeloproliferative Neoplasms (MPN)-A Puzzle Still to Be Solved.
    Bhuria V; Baldauf CK; Schraven B; Fischer T
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrombosis and hemorrhage in myeloproliferative neoplasms: The platelet perspective.
    Feng Y; Zhang Y; Shi J
    Platelets; 2022 Oct; 33(7):955-963. PubMed ID: 35081860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloproliferative Neoplasms in Children and Adolescents and Thrombosis at Unusual Sites: The Role of Driver Mutations.
    Tafesh L; Musgrave K; Roberts W; Plews D; Carey P; Biss T
    J Pediatr Hematol Oncol; 2019 Aug; 41(6):490-493. PubMed ID: 29668539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thrombosis in myeloproliferative neoplasms.
    Falanga A; Marchetti M
    Semin Thromb Hemost; 2014 Apr; 40(3):348-58. PubMed ID: 24610470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are MPNs vascular diseases?
    Finazzi G; De Stefano V; Barbui T
    Curr Hematol Malig Rep; 2013 Dec; 8(4):307-16. PubMed ID: 24037420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thrombosis in the Philadelphia Chromosome-Negative Myeloproliferative Neoplasms.
    Sankar K; Stein BL; Rampal RK
    Cancer Treat Res; 2019; 179():159-178. PubMed ID: 31317487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association between thromboembolic events and the JAK2 V617F mutation in myeloproliferative neoplasms.
    Takata Y; Seki R; Kanajii T; Nohara M; Koteda S; Kawaguchi K; Nomura K; Nakamura T; Morishige S; Oku E; Osaki K; Hashiguchi E; Mouri F; Yoshimoto K; Nagafuji K; Okamura T
    Kurume Med J; 2014; 60(3-4):89-97. PubMed ID: 24858412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms.
    Teofili L; Martini M; Iachininoto MG; Capodimonti S; Nuzzolo ER; Torti L; Cenci T; Larocca LM; Leone G
    Blood; 2011 Mar; 117(9):2700-7. PubMed ID: 21212285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The JAK2 V617F mutational status and allele burden may be related with the risk of venous thromboembolic events in patients with Philadelphia-negative myeloproliferative neoplasms.
    Borowczyk M; Wojtaszewska M; Lewandowski K; Gil L; Lewandowska M; Lehmann-Kopydłowska A; Kroll-Balcerzak R; Balcerzak A; Iwoła M; Michalak M; Komarnicki M
    Thromb Res; 2015 Feb; 135(2):272-80. PubMed ID: 25559461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk factors and incidence of thrombosis in a Brazilian cohort of patients with Philadelphia-negative myeloproliferative neoplasms.
    Seguro FS; Teixeira LLC; da Rosa LI; da Silva WF; Nardinelli L; Bendit I; Rocha V
    J Thromb Thrombolysis; 2020 May; 49(4):667-672. PubMed ID: 31898273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing procoagulant activity of circulating microparticles in patients with Philadelphia-negative myeloproliferative neoplasms: a single-centre experience.
    Kissova J; Ovesna P; Bulikova A; Zavřelova J; Penka M
    Blood Coagul Fibrinolysis; 2015 Jun; 26(4):448-53. PubMed ID: 25828967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.