These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 33650431)
1. Graphite-Embedded Lithium Iron Phosphate for High-Power-Energy Cathodes. Li F; Tao R; Tan X; Xu J; Kong D; Shen L; Mo R; Li J; Lu Y Nano Lett; 2021 Mar; 21(6):2572-2579. PubMed ID: 33650431 [TBL] [Abstract][Full Text] [Related]
2. Reduced Graphene Oxide Coating LiFePO Zhang Q; Zhou Y; Tong Y; Chi Y; Liu R; Dai C; Li Z; Cui Z; Liang Y; Tan Y Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139376 [TBL] [Abstract][Full Text] [Related]
3. Seeding Iron Trifluoride Nanoparticles on Reduced Graphite Oxide for Lithium-Ion Batteries with Enhanced Loading and Stability. Qiu D; Fu L; Zhan C; Lu J; Wu D ACS Appl Mater Interfaces; 2018 Sep; 10(35):29505-29510. PubMed ID: 30092138 [TBL] [Abstract][Full Text] [Related]
4. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries. Ni H; Liu J; Fan LZ Nanoscale; 2013 Mar; 5(5):2164-8. PubMed ID: 23389625 [TBL] [Abstract][Full Text] [Related]
5. Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithium-Ion Batteries. Lyu H; Li P; Liu J; Mahurin S; Chen J; Hensley DK; Veith GM; Guo Z; Dai S; Sun XG ChemSusChem; 2018 Feb; 11(4):763-772. PubMed ID: 29363278 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities. Wang B; Ryu J; Choi S; Zhang X; Pribat D; Li X; Zhi L; Park S; Ruoff RS ACS Nano; 2019 Feb; 13(2):2307-2315. PubMed ID: 30707012 [TBL] [Abstract][Full Text] [Related]
7. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590 [TBL] [Abstract][Full Text] [Related]
8. Hierarchical Graphene-Scaffolded Silicon/Graphite Composites as High Performance Anodes for Lithium-Ion Batteries. Zhu S; Zhou J; Guan Y; Cai W; Zhao Y; Zhu Y; Zhu L; Zhu Y; Qian Y Small; 2018 Nov; 14(47):e1802457. PubMed ID: 30328267 [TBL] [Abstract][Full Text] [Related]
9. Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries. Duan W; Husain M; Li Y; Lashari NUR; Yang Y; Ma C; Zhao Y; Li X RSC Adv; 2023 Aug; 13(36):25327-25333. PubMed ID: 37622017 [TBL] [Abstract][Full Text] [Related]
10. Metal/LiF/Li Du J; Wang W; Sheng Eng AY; Liu X; Wan M; Seh ZW; Sun Y Nano Lett; 2020 Jan; 20(1):546-552. PubMed ID: 31775001 [TBL] [Abstract][Full Text] [Related]
11. Effect of Heteroatom Doping on Electrochemical Properties of Olivine LiFePO Jiang X; Xin Y; He B; Zhang F; Tian H Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541453 [TBL] [Abstract][Full Text] [Related]
12. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery. Wang X; Zhang W; Huang Y; Xia T; Lian Y J Nanosci Nanotechnol; 2016 Jun; 16(6):6494-7. PubMed ID: 27427742 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Cycle Stability of Zinc Sulfide Anode for High-Performance Lithium-Ion Storage: Effect of Conductive Hybrid Matrix on Active ZnS. Nguyen QH; Park T; Hur J Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470578 [TBL] [Abstract][Full Text] [Related]
14. A facile route to modify ferrous phosphate and its use as an iron-containing resource for LiFePO4 via a polyol process. Li S; Liu X; Mi R; Liu H; Li Y; Lau WM; Mei J ACS Appl Mater Interfaces; 2014 Jun; 6(12):9449-57. PubMed ID: 24858212 [TBL] [Abstract][Full Text] [Related]
15. Enabling high-performance lithium iron phosphate cathodes through an interconnected carbon network for practical and high-energy lithium-ion batteries. Li B; Xiao J; Zhu X; Wu Z; Zhang X; Han Y; Niu J; Wang F J Colloid Interface Sci; 2024 Jan; 653(Pt A):942-948. PubMed ID: 37774657 [TBL] [Abstract][Full Text] [Related]
16. A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries. Wang Y; Tian W; Wang L; Zhang H; Liu J; Peng T; Pan L; Wang X; Wu M ACS Appl Mater Interfaces; 2018 Feb; 10(6):5577-5585. PubMed ID: 29346719 [TBL] [Abstract][Full Text] [Related]
17. Three-Dimensional LiMnPO4·Li3V2(PO4)3/C Nanocomposite as a Bicontinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries. Luo Y; Xu X; Zhang Y; Pi Y; Yan M; Wei Q; Tian X; Mai L ACS Appl Mater Interfaces; 2015 Aug; 7(31):17527-34. PubMed ID: 26196544 [TBL] [Abstract][Full Text] [Related]
18. Fe Jiang F; Yan X; Du R; Kang L; Du W; Sun J; Zhou Y Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31295969 [TBL] [Abstract][Full Text] [Related]
19. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Ji G; Wang J; Liang Z; Jia K; Ma J; Zhuang Z; Zhou G; Cheng HM Nat Commun; 2023 Feb; 14(1):584. PubMed ID: 36737610 [TBL] [Abstract][Full Text] [Related]
20. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries. Ghosh A; Manjunatha R; Kumar R; Mitra S ACS Appl Mater Interfaces; 2016 Dec; 8(49):33775-33785. PubMed ID: 27960357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]