BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 33650488)

  • 61. A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution.
    Grau-Bové X; Navarrete C; Chiva C; Pribasnig T; Antó M; Torruella G; Galindo LJ; Lang BF; Moreira D; López-Garcia P; Ruiz-Trillo I; Schleper C; Sabidó E; Sebé-Pedrós A
    Nat Ecol Evol; 2022 Jul; 6(7):1007-1023. PubMed ID: 35680998
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mechanical and structural properties of archaeal hypernucleosomes.
    Henneman B; Brouwer TB; Erkelens AM; Kuijntjes GJ; van Emmerik C; van der Valk RA; Timmer M; Kirolos NCS; van Ingen H; van Noort J; Dame RT
    Nucleic Acids Res; 2021 May; 49(8):4338-4349. PubMed ID: 33341892
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Linking chromatin composition and structural dynamics at the nucleosome level.
    Armeev GA; Gribkova AK; Pospelova I; Komarova GA; Shaytan AK
    Curr Opin Struct Biol; 2019 Jun; 56():46-55. PubMed ID: 30529788
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance.
    Erives AJ
    Epigenetics Chromatin; 2017 Nov; 10(1):55. PubMed ID: 29179736
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Archaeal nucleosome positioning sequence from Methanothermus fervidus.
    Pereira SL; Reeve JN
    J Mol Biol; 1999 Jun; 289(4):675-81. PubMed ID: 10369753
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transcription by an archaeal RNA polymerase is slowed but not blocked by an archaeal nucleosome.
    Xie Y; Reeve JN
    J Bacteriol; 2004 Jun; 186(11):3492-8. PubMed ID: 15150236
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Single-molecule force spectroscopy on histone H4 tail-cross-linked chromatin reveals fiber folding.
    Kaczmarczyk A; Allahverdi A; Brouwer TB; Nordenskiöld L; Dekker NH; van Noort J
    J Biol Chem; 2017 Oct; 292(42):17506-17513. PubMed ID: 28855255
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Chemical Synthesis of K34-Ubiquitylated H2B for Nucleosome Reconstitution and Single-Particle Cryo-Electron Microscopy Structural Analysis.
    Li J; He Q; Liu Y; Liu S; Tang S; Li C; Sun D; Li X; Zhou M; Zhu P; Bi G; Zhou Z; Zheng JS; Tian C
    Chembiochem; 2017 Jan; 18(2):176-180. PubMed ID: 27976477
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The chromatin landscape of the euryarchaeon Haloferax volcanii.
    Marinov GK; Bagdatli ST; Wu T; He C; Kundaje A; Greenleaf WJ
    Genome Biol; 2023 Nov; 24(1):253. PubMed ID: 37932847
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nano-Surveillance: Tracking Individual Molecules in a Sea of Chromatin.
    Melters DP; Dalal Y
    J Mol Biol; 2021 Mar; 433(6):166720. PubMed ID: 33221335
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.
    Song F; Chen P; Sun D; Wang M; Dong L; Liang D; Xu RM; Zhu P; Li G
    Science; 2014 Apr; 344(6182):376-80. PubMed ID: 24763583
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rules and regulation in the primary structure of chromatin.
    Rando OJ; Ahmad K
    Curr Opin Cell Biol; 2007 Jun; 19(3):250-6. PubMed ID: 17466507
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evolution of DNA replication protein complexes in eukaryotes and Archaea.
    Chia N; Cann I; Olsen GJ
    PLoS One; 2010 Jun; 5(6):e10866. PubMed ID: 20532250
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High mobility group proteins 14 and 17 can space nucleosomal particles deficient in histones H2A and H2B creating a template that is transcriptionally active.
    Tremethick DJ
    J Biol Chem; 1994 Nov; 269(45):28436-42. PubMed ID: 7961785
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Effects of Histone H2B Ubiquitylations on the Nucleosome Structure and Internucleosomal Interactions.
    Sengupta B; Huynh M; Smith CB; McGinty RK; Krajewski W; Lee TH
    Biochemistry; 2022 Oct; 61(20):2198-2205. PubMed ID: 36112542
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structures and Functions of Chromatin Fibers.
    Chen P; Li W; Li G
    Annu Rev Biophys; 2021 May; 50():95-116. PubMed ID: 33957053
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of histone acetylation and CpG methylation on the structure of nucleosomes.
    Lee JY; Lee TH
    Biochim Biophys Acta; 2012 Aug; 1824(8):974-82. PubMed ID: 22627143
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bacterial histone HBb from Bdellovibrio bacteriovorus compacts DNA by bending.
    Hu Y; Schwab S; Deiss S; Escudeiro P; van Heesch T; Joiner JD; Vreede J; Hartmann MD; Lupas AN; Alvarez BH; Alva V; Dame RT
    Nucleic Acids Res; 2024 Jun; ():. PubMed ID: 38864377
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Combining molecular dynamics simulations and scoring method to computationally model ubiquitylated linker histones in chromatosomes.
    Sawade K; Marx A; Peter C; Kukharenko O
    PLoS Comput Biol; 2023 Aug; 19(8):e1010531. PubMed ID: 37527265
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nucleosomal DNA Dynamics Mediate Oct4 Pioneer Factor Binding.
    Huertas J; MacCarthy CM; Schöler HR; Cojocaru V
    Biophys J; 2020 May; 118(9):2280-2296. PubMed ID: 32027821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.