These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33650585)

  • 1. In situ FTIR study of CO
    Lee JE; Yamaguchi A; Ooka H; Kazami T; Miyauchi M; Kitadai N; Nakamura R
    Chem Commun (Camb); 2021 Apr; 57(26):3267-3270. PubMed ID: 33650585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the mechanism of nickel insertion into carbon monoxide dehydrogenase: analysis of Rhodospirillum rubrum carbon monoxide dehydrogenase variants with substituted ligands to the [Fe3S4] portion of the active-site C-cluster.
    Jeon WB; Singer SW; Ludden PW; Rubio LM
    J Biol Inorg Chem; 2005 Dec; 10(8):903-12. PubMed ID: 16283394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for nickel-iron cofactors in biological carbon monoxide and carbon dioxide utilization.
    Kung Y; Drennan CL
    Curr Opin Chem Biol; 2011 Apr; 15(2):276-83. PubMed ID: 21130022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase.
    Jeoung JH; Dobbek H
    Science; 2007 Nov; 318(5855):1461-4. PubMed ID: 18048691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-Principles Calculations on Ni,Fe-Containing Carbon Monoxide Dehydrogenases Reveal Key Stereoelectronic Features for Binding and Release of CO
    Breglia R; Arrigoni F; Sensi M; Greco C; Fantucci P; De Gioia L; Bruschi M
    Inorg Chem; 2021 Jan; 60(1):387-402. PubMed ID: 33321036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly selective electrocatalytic conversion of CO2 to CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica.
    Shin W; Lee SH; Shin JW; Lee SP; Kim Y
    J Am Chem Soc; 2003 Dec; 125(48):14688-9. PubMed ID: 14640627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the catalytic mechanism of Mo-Cu carbon monoxide dehydrogenase using QM/MM and DFT calculations.
    Xu K; Hirao H
    Phys Chem Chem Phys; 2018 Jul; 20(28):18938-18948. PubMed ID: 29744484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases.
    Wang VC; Ragsdale SW; Armstrong FA
    Met Ions Life Sci; 2014; 14():71-97. PubMed ID: 25416391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How the [NiFe4S4] Cluster of CO Dehydrogenase Activates CO2 and NCO(-).
    Fesseler J; Jeoung JH; Dobbek H
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8560-4. PubMed ID: 25926100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO
    Carlson ED; Papoutsakis ET
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13C NMR characterization of an exchange reaction between CO and CO2 catalyzed by carbon monoxide dehydrogenase.
    Seravalli J; Ragsdale SW
    Biochemistry; 2008 Jul; 47(26):6770-81. PubMed ID: 18589895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations of two bidirectional carbon monoxide dehydrogenases from Carboxydothermus hydrogenoformans by protein film electrochemistry.
    Wang VC; Ragsdale SW; Armstrong FA
    Chembiochem; 2013 Sep; 14(14):1845-51. PubMed ID: 24002936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode.
    Parkin A; Seravalli J; Vincent KA; Ragsdale SW; Armstrong FA
    J Am Chem Soc; 2007 Aug; 129(34):10328-9. PubMed ID: 17672466
    [No Abstract]   [Full Text] [Related]  

  • 14. Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications.
    Anderson ME; Lindahl PA
    Biochemistry; 1996 Jun; 35(25):8371-80. PubMed ID: 8679595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymology. A trio of transition metals in anaerobic CO2 fixation.
    Peters JW
    Science; 2002 Oct; 298(5593):552-3. PubMed ID: 12386322
    [No Abstract]   [Full Text] [Related]  

  • 16. CO/CO2 potentiometric titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the effect of CO2.
    Russell WK; Lindahl PA
    Biochemistry; 1998 Jul; 37(28):10016-26. PubMed ID: 9665707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of carbon disulfide to the site of acetyl-CoA synthesis by the nickel-iron-sulfur protein, carbon monoxide dehydrogenase, from Clostridium thermoaceticum.
    Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1994 Aug; 33(32):9769-77. PubMed ID: 8068656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Over-expression of carbon monoxide dehydrogenase-I with an accessory protein co-expression: a key enzyme for carbon dioxide reduction.
    Inoue T; Takao K; Fukuyama Y; Yoshida T; Sako Y
    Biosci Biotechnol Biochem; 2014; 78(4):582-7. PubMed ID: 25036953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of carbon monoxide oxidation by the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum: kinetic characterization of the intermediates.
    Seravalli J; Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1997 Sep; 36(37):11241-51. PubMed ID: 9287167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon monoxide dehydrogenase from Rhodospirillum rubrum produces formate.
    Heo J; Skjeldal L; Staples CR; Ludden PW
    J Biol Inorg Chem; 2002 Sep; 7(7-8):810-4. PubMed ID: 12203017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.