BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33650618)

  • 21. Lamellar structures formed by stratum corneum lipids in vitro: a deuterium nuclear magnetic resonance (NMR) study.
    Abraham W; Downing DT
    Pharm Res; 1992 Nov; 9(11):1415-21. PubMed ID: 1475227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemoselective reduction and self-immolation based FRET probes for detecting hydrogen sulfide in solution and in cells.
    Chen B; Wang P; Jin Q; Tang X
    Org Biomol Chem; 2014 Aug; 12(30):5629-33. PubMed ID: 24962216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of surface immobilized 3-azidocoumarin-based fluorogenic probe via strain promoted click chemistry.
    Bharathi MV; Chhabra M; Paira P
    Bioorg Med Chem Lett; 2015 Dec; 25(24):5737-42. PubMed ID: 26531149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organization and dynamics of NBD-labeled lipids in lipid bilayer analyzed by FRET using the small membrane fluorescent probe AHBA as donor.
    Marquezin CA; Ito AS; de Souza ES
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182995. PubMed ID: 31136733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Azide-tagged sphingolipids: new tools for metabolic flux analysis.
    Garrido M; Abad JL; Fabriàs G; Casas J; Delgado A
    Chembiochem; 2015 Mar; 16(4):641-50. PubMed ID: 25676480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-color emissive probes for click reactions.
    Wirtz M; Grüter A; Rebmann P; Dier T; Volmer DA; Huch V; Jung G
    Chem Commun (Camb); 2014 Oct; 50(84):12694-7. PubMed ID: 25200167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue.
    Lipsky NG; Pagano RE
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2608-12. PubMed ID: 6573674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel mechanism of dasatinib-induced apoptosis in chronic myeloid leukemia; ceramide synthase and ceramide clearance genes.
    Gencer EB; Ural AU; Avcu F; Baran Y
    Ann Hematol; 2011 Nov; 90(11):1265-75. PubMed ID: 21455605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strain-promoted double-click reaction for chemical modification of azido-biomolecules.
    Kii I; Shiraishi A; Hiramatsu T; Matsushita T; Uekusa H; Yoshida S; Yamamoto M; Kudo A; Hagiwara M; Hosoya T
    Org Biomol Chem; 2010 Sep; 8(18):4051-5. PubMed ID: 20657923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate.
    Laviad EL; Albee L; Pankova-Kholmyansky I; Epstein S; Park H; Merrill AH; Futerman AH
    J Biol Chem; 2008 Feb; 283(9):5677-84. PubMed ID: 18165233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model.
    Kendall AC; Kiezel-Tsugunova M; Brownbridge LC; Harwood JL; Nicolaou A
    Biochim Biophys Acta Biomembr; 2017 Sep; 1859(9 Pt B):1679-1689. PubMed ID: 28341437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stick, Flick, Click: DNA-guided Fluorescent Labeling of Long RNA for Single-molecule FRET.
    Steffen FD; Börner R; Freisinger E; Sigel RKO
    Chimia (Aarau); 2019 Apr; 73(4):257-261. PubMed ID: 30975253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.
    Hoogenboom J; Berghuis N; Cramer D; Geurts R; Zuilhof H; Wennekes T
    BMC Plant Biol; 2016 Oct; 16(1):220. PubMed ID: 27724898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of interactions between structured nucleic acids by fluorescence resonance energy transfer (FRET): selection of target sites for functional nucleic acids.
    Ota N; Hirano K; Warashina M; Andrus A; Mullah B; Hatanaka K; Taira K
    Nucleic Acids Res; 1998 Feb; 26(3):735-43. PubMed ID: 9443965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic Incorporation of N-Acetyl Muramic Acid Probes into Bacterial Peptidoglycan.
    DeMeester KE; Liang H; Zhou J; Wodzanowski KA; Prather BL; Santiago CC; Grimes CL
    Curr Protoc Chem Biol; 2019 Dec; 11(4):e74. PubMed ID: 31763799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biophysical properties of novel 1-deoxy-(dihydro)ceramides occurring in mammalian cells.
    Jiménez-Rojo N; Sot J; Busto JV; Shaw WA; Duan J; Merrill AH; Alonso A; Goñi FM
    Biophys J; 2014 Dec; 107(12):2850-2859. PubMed ID: 25517151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic synthesis of omega-amino-ceramide: preparation of a sensitive fluorescent substrate for ceramidase.
    Tani M; Kita K; Komori H; Nakagawa T; Ito M
    Anal Biochem; 1998 Oct; 263(2):183-8. PubMed ID: 9799530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural identification of skin ceramides containing ω-hydroxy acyl chains using mass spectrometry.
    Wu Z; Shon JC; Kim JY; Cho Y; Liu KH
    Arch Pharm Res; 2016 Oct; 39(10):1426-1432. PubMed ID: 27432202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FRET Imaging of Enzymatic Activities Using Smart Probes.
    Li J; Zhang Y; Cheng Z
    Methods Mol Biol; 2016; 1444():37-43. PubMed ID: 27283415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of ceramides and tear lipocalin.
    Glasgow BJ; Abduragimov AR
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Apr; 1863(4):399-408. PubMed ID: 29331331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.