These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 33651288)
1. Treatment of slaughterhouse wastewater by electrocoagulation and electroflotation as a combined process: process optimization through response surface methodology. Akarsu C; Deveci EÜ; Gönen Ç; Madenli Ö Environ Sci Pollut Res Int; 2021 Jul; 28(26):34473-34488. PubMed ID: 33651288 [TBL] [Abstract][Full Text] [Related]
2. Electrocoagulation for nutrients removal in the slaughterhouse wastewater: comparison between iron and aluminum electrodes treatment. Potrich MC; Duarte ESA; Sikora MS; Costa da Rocha RD Environ Technol; 2022 Feb; 43(5):751-765. PubMed ID: 32731790 [TBL] [Abstract][Full Text] [Related]
3. Optimization of the pretreatment of wastewater from a slaughterhouse and packing plant through electrocoagulation in a batch reactor. Orssatto F; Ferreira Tavares MH; Manente da Silva F; Eyng E; Farias Biassi B; Fleck L Environ Technol; 2017 Oct; 38(19):2465-2475. PubMed ID: 27892816 [TBL] [Abstract][Full Text] [Related]
4. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes. Esfandyari Y; Mahdavi Y; Seyedsalehi M; Hoseini M; Safari GH; Ghozikali MG; Kamani H; Jaafari J Environ Sci Pollut Res Int; 2015 Apr; 22(8):6288-97. PubMed ID: 25408073 [TBL] [Abstract][Full Text] [Related]
5. Sequential use of the electrocoagulation-electrooxidation processes for domestic wastewater treatment. Özyonar F; Korkmaz MU Chemosphere; 2022 Mar; 290():133172. PubMed ID: 34914950 [TBL] [Abstract][Full Text] [Related]
6. The effect of pre-treatment methods on membrane flux, COD, and total phenol removal efficiencies for membrane treatment of pistachio wastewater. Ozay Y; Dizge N J Environ Manage; 2022 May; 310():114762. PubMed ID: 35220102 [TBL] [Abstract][Full Text] [Related]
7. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis. Tsioptsias C; Petridis D; Athanasakis N; Lemonidis I; Deligiannis A; Samaras P J Environ Manage; 2015 Dec; 164():104-13. PubMed ID: 26363257 [TBL] [Abstract][Full Text] [Related]
8. Efficiency analysis of the electrocoagulation and electroflotation treatment of poultry slaughterhouse wastewater using aluminum and graphite anodes. Paulista LO; Presumido PH; Theodoro JDP; Pinheiro ALN Environ Sci Pollut Res Int; 2018 Jul; 25(20):19790-19800. PubMed ID: 29736656 [TBL] [Abstract][Full Text] [Related]
9. Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: performance investigation, mechanism exploration, and cost analysis. Shaker OA; Safwat SM; Matta ME Environ Sci Pollut Res Int; 2023 Feb; 30(10):26650-26662. PubMed ID: 36369444 [TBL] [Abstract][Full Text] [Related]
10. Treatment of cardboard factory wastewater using ozone-assisted electrocoagulation process: optimization through response surface methodology. Mehralian M; Khashij M; Dalvand A Environ Sci Pollut Res Int; 2021 Sep; 28(33):45041-45049. PubMed ID: 33860423 [TBL] [Abstract][Full Text] [Related]
11. Optimization of a combined electrocoagulation-electroflotation reactor. Jiménez C; Sáez C; Cañizares P; Rodrigo MA Environ Sci Pollut Res Int; 2016 May; 23(10):9700-11. PubMed ID: 26846247 [TBL] [Abstract][Full Text] [Related]
12. Removal of disperse and reactive dyes from aqueous solutions using ultrasound-assisted electrocoagulation. Özyonar F; Gökkuş Ö; Sabuni M Chemosphere; 2020 Nov; 258():127325. PubMed ID: 32540541 [TBL] [Abstract][Full Text] [Related]
13. Anodic oxidation of slaughterhouse wastewater on boron-doped diamond: process variables effect. Abdelhay A; Jum'h I; Abdulhay E; Al-Kazwini A; Alzubi M Water Sci Technol; 2017 Dec; 76(11-12):3227-3235. PubMed ID: 29236002 [TBL] [Abstract][Full Text] [Related]
15. Kinetic study of slaughterhouse wastewater treatment by electrocoagulation using Fe electrodes. Ahmadian M; Yousefi N; Van Ginkel SW; Zare MR; Rahimi S; Fatehizadeh A Water Sci Technol; 2012; 66(4):754-60. PubMed ID: 22766863 [TBL] [Abstract][Full Text] [Related]
16. Optimizing electrocoagulation for poultry slaughterhouse wastewater treatment: a fuzzy axiomatic design approach. Tanatti NP; Sezer M Environ Sci Pollut Res Int; 2024 May; 31(21):31159-31173. PubMed ID: 38627343 [TBL] [Abstract][Full Text] [Related]
17. Enhancing industrial swine slaughterhouse wastewater treatment: Optimization of electrocoagulation technique and operating mode. Sandoval MA; Coreño O; García V; Salazar-González R J Environ Manage; 2024 Jan; 349():119556. PubMed ID: 37984271 [TBL] [Abstract][Full Text] [Related]
18. Treatment of olive processing wastewater by electrocoagulation: An effectiveness and economic assessment. Niazmand R; Jahani M; Kalantarian S J Environ Manage; 2019 Oct; 248():109262. PubMed ID: 31330271 [TBL] [Abstract][Full Text] [Related]
19. Electrocoagulation pre-treatment to simultaneously remove dissolved and colloidal substances and Ca Liu H; Wu Y; Li M; Ma H; Li M; Zhu K; Jian Zhang ; Chen G; Wang Z; Wang S Chemosphere; 2021 Apr; 268():128851. PubMed ID: 33168278 [TBL] [Abstract][Full Text] [Related]
20. The performance of pharmaceutical wastewater treatment system of electrocoagulation assisted adsorption using perforated electrodes to reduce passivation. Al-Qodah Z; Al-Zghoul TM; Jamrah A Environ Sci Pollut Res Int; 2024 Mar; 31(13):20434-20448. PubMed ID: 38376783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]