These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Microfluidic fabrication and permeation behaviors of uniform zwitterionic hydrogel microparticles and shells. Park J; Byun A; Kim DH; Shin SS; Kim JH; Kim JW J Colloid Interface Sci; 2014 Jul; 426():162-9. PubMed ID: 24863779 [TBL] [Abstract][Full Text] [Related]
7. Double emulsions with controlled morphology by microgel scaffolding. Thiele J; Seiffert S Lab Chip; 2011 Sep; 11(18):3188-92. PubMed ID: 21796282 [TBL] [Abstract][Full Text] [Related]
8. All-Aqueous Electrosprayed Emulsion for Templated Fabrication of Cytocompatible Microcapsules. Song Y; Chan YK; Ma Q; Liu Z; Shum HC ACS Appl Mater Interfaces; 2015 Jul; 7(25):13925-33. PubMed ID: 26053733 [TBL] [Abstract][Full Text] [Related]
9. Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering. Xing L; Sun J; Tan H; Yuan G; Li J; Jia Y; Xiong D; Chen G; Lai J; Ling Z; Chen Y; Niu X Int J Biol Macromol; 2019 Apr; 127():340-348. PubMed ID: 30658141 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device. Lan W; Li S; Xu J; Luo G Langmuir; 2011 Nov; 27(21):13242-7. PubMed ID: 21899338 [TBL] [Abstract][Full Text] [Related]
11. Hydrophilic core-shell microspheres: a suitable support for controlled attachment of proteins and biomedical diagnostics. Basinska T Macromol Biosci; 2005 Dec; 5(12):1145-68. PubMed ID: 16294370 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of chitosan-poly(ethylene glycol) hybrid hydrogel microparticles via replica molding and its application toward facile conjugation of biomolecules. Jung S; Yi H Langmuir; 2012 Dec; 28(49):17061-70. PubMed ID: 23163737 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic Formation of Hydrogel Microcapsules with a Single Aqueous Core by Spontaneous Cross-Linking in Aqueous Two-Phase System Droplets. Watanabe T; Motohiro I; Ono T Langmuir; 2019 Feb; 35(6):2358-2367. PubMed ID: 30626189 [TBL] [Abstract][Full Text] [Related]
14. Droplet Microfluidics-Based Fabrication of Monodisperse Poly(ethylene glycol)-Fibrinogen Breast Cancer Microspheres for Automated Drug Screening Applications. Seeto WJ; Tian Y; Pradhan S; Minond D; Lipke EA ACS Biomater Sci Eng; 2022 Sep; 8(9):3831-3841. PubMed ID: 35969206 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Nisisako T; Torii T Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device. Zhu L; Li Y; Zhang Q; Wang H; Zhu M Biomed Microdevices; 2010 Feb; 12(1):169-77. PubMed ID: 19924539 [TBL] [Abstract][Full Text] [Related]
18. Rapid Production of Cell-Laden Microspheres Using a Flexible Microfluidic Encapsulation Platform. Seeto WJ; Tian Y; Pradhan S; Kerscher P; Lipke EA Small; 2019 Nov; 15(47):e1902058. PubMed ID: 31468632 [TBL] [Abstract][Full Text] [Related]
19. Broad-temperature-range mechanically tunable hydrogel microcapsules for controlled active release. Jeong HS; Kim E; Park JP; Lee SJ; Lee H; Choi CH J Control Release; 2023 Apr; 356():337-346. PubMed ID: 36871645 [TBL] [Abstract][Full Text] [Related]