These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33651584)

  • 1. Triple Emulsion-Based Rapid Microfluidic Production of Core-Shell Hydrogel Microspheres for Programmable Biomolecular Conjugation.
    Liu EY; Choi Y; Yi H; Choi CH
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11579-11587. PubMed ID: 33651584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation.
    Liu EY; Jung S; Weitz DA; Yi H; Choi CH
    Lab Chip; 2018 Jan; 18(2):323-334. PubMed ID: 29242870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Color-encoded multicompartmental hydrogel microspheres for multiplexed bioassays.
    Kim JH; Kim JH; Jeong HS; Lee SJ; Park JP; Choi CH
    Talanta; 2024 Nov; 279():126571. PubMed ID: 39029178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porosity-Tuned Chitosan-Polyacrylamide Hydrogel Microspheres for Improved Protein Conjugation.
    Jung S; Abel JH; Starger JL; Yi H
    Biomacromolecules; 2016 Jul; 17(7):2427-36. PubMed ID: 27351270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
    Krutkramelis K; Xia B; Oakey J
    Lab Chip; 2016 Apr; 16(8):1457-65. PubMed ID: 26987384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic fabrication and permeation behaviors of uniform zwitterionic hydrogel microparticles and shells.
    Park J; Byun A; Kim DH; Shin SS; Kim JH; Kim JW
    J Colloid Interface Sci; 2014 Jul; 426():162-9. PubMed ID: 24863779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double emulsions with controlled morphology by microgel scaffolding.
    Thiele J; Seiffert S
    Lab Chip; 2011 Sep; 11(18):3188-92. PubMed ID: 21796282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Aqueous Electrosprayed Emulsion for Templated Fabrication of Cytocompatible Microcapsules.
    Song Y; Chan YK; Ma Q; Liu Z; Shum HC
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13925-33. PubMed ID: 26053733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering.
    Xing L; Sun J; Tan H; Yuan G; Li J; Jia Y; Xiong D; Chen G; Lai J; Ling Z; Chen Y; Niu X
    Int J Biol Macromol; 2019 Apr; 127():340-348. PubMed ID: 30658141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device.
    Lan W; Li S; Xu J; Luo G
    Langmuir; 2011 Nov; 27(21):13242-7. PubMed ID: 21899338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic core-shell microspheres: a suitable support for controlled attachment of proteins and biomedical diagnostics.
    Basinska T
    Macromol Biosci; 2005 Dec; 5(12):1145-68. PubMed ID: 16294370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of chitosan-poly(ethylene glycol) hybrid hydrogel microparticles via replica molding and its application toward facile conjugation of biomolecules.
    Jung S; Yi H
    Langmuir; 2012 Dec; 28(49):17061-70. PubMed ID: 23163737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Formation of Hydrogel Microcapsules with a Single Aqueous Core by Spontaneous Cross-Linking in Aqueous Two-Phase System Droplets.
    Watanabe T; Motohiro I; Ono T
    Langmuir; 2019 Feb; 35(6):2358-2367. PubMed ID: 30626189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet Microfluidics-Based Fabrication of Monodisperse Poly(ethylene glycol)-Fibrinogen Breast Cancer Microspheres for Automated Drug Screening Applications.
    Seeto WJ; Tian Y; Pradhan S; Minond D; Lipke EA
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3831-3841. PubMed ID: 35969206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering functional hydrogel microparticle interfaces by controlled oxygen-inhibited photopolymerization.
    Debroy D; Li-Oakey KD; Oakey J
    Colloids Surf B Biointerfaces; 2019 Aug; 180():371-375. PubMed ID: 31079030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device.
    Zhu L; Li Y; Zhang Q; Wang H; Zhu M
    Biomed Microdevices; 2010 Feb; 12(1):169-77. PubMed ID: 19924539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Production of Cell-Laden Microspheres Using a Flexible Microfluidic Encapsulation Platform.
    Seeto WJ; Tian Y; Pradhan S; Kerscher P; Lipke EA
    Small; 2019 Nov; 15(47):e1902058. PubMed ID: 31468632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broad-temperature-range mechanically tunable hydrogel microcapsules for controlled active release.
    Jeong HS; Kim E; Park JP; Lee SJ; Lee H; Choi CH
    J Control Release; 2023 Apr; 356():337-346. PubMed ID: 36871645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip porous microgel generation for microfluidic enhanced VEGF detection.
    Zhao Z; Al-Ameen MA; Duan K; Ghosh G; Lo JF
    Biosens Bioelectron; 2015 Dec; 74():305-12. PubMed ID: 26148675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.