These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33651599)

  • 1. Mechanism Dictates Mechanics: A Molecular Substituent Effect in the Macroscopic Fracture of a Covalent Polymer Network.
    Wang S; Beech HK; Bowser BH; Kouznetsova TB; Olsen BD; Rubinstein M; Craig SL
    J Am Chem Soc; 2021 Mar; 143(10):3714-3718. PubMed ID: 33651599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile route to viologen functional macromolecules through azide-alkyne [3+2] cycloaddition.
    Janeček ER; Rauwald U; del Barrio J; Cziferszky M; Scherman OA
    Macromol Rapid Commun; 2013 Oct; 34(19):1547-53. PubMed ID: 23996858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient synthesis of high purity homo-arm and mikto-arm poly(ethylene glycol) stars using epoxide and azide-alkyne coupling chemistry.
    Zhang B; Zhang H; Elupula R; Alb AM; Grayson SM
    Macromol Rapid Commun; 2014 Jan; 35(2):146-151. PubMed ID: 24272944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture energy of polymer gels with controlled network structures.
    Akagi Y; Sakurai H; Gong JP; Chung UI; Sakai T
    J Chem Phys; 2013 Oct; 139(14):144905. PubMed ID: 24116644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of Poly(ethylene glycol) Hydrogels Cross-Linked via Strain-Promoted Alkyne-Azide Cycloaddition (SPAAC).
    Hodgson SM; Bakaic E; Stewart SA; Hoare T; Adronov A
    Biomacromolecules; 2016 Mar; 17(3):1093-100. PubMed ID: 26842783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring protein-polymer conjugation by a fluorogenic Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition.
    Dirks AT; Cornelissen JJ; Nolte RJ
    Bioconjug Chem; 2009 Jun; 20(6):1129-38. PubMed ID: 19453101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Click" chemistry in a supramolecular environment: stabilization of organogels by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition.
    Díaz DD; Rajagopal K; Strable E; Schneider J; Finn MG
    J Am Chem Soc; 2006 May; 128(18):6056-7. PubMed ID: 16669673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthogonal Synthesis of Block Copolymer via Photoinduced CuAAC and Ketene Chemistries.
    Tasdelen MA; Taskin OS; Celik C
    Macromol Rapid Commun; 2016 Mar; 37(6):521-6. PubMed ID: 26847166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycidyl Triazolyl Polymers: Poly(ethylene glycol) Derivatives Functionalized by Azide-Alkyne Cycloaddition Reaction.
    Ikeda T
    Macromol Rapid Commun; 2018 Apr; 39(8):e1700825. PubMed ID: 29528171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanochemical Cycloreversion of Cyclobutane Observed at the Single Molecule Level.
    Pill MF; Holz K; Preußke N; Berger F; Clausen-Schaumann H; Lüning U; Beyer MK
    Chemistry; 2016 Aug; 22(34):12034-9. PubMed ID: 27415146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinitiated alkyne-azide click and radical cross-linking reactions for the patterning of PEG hydrogels.
    Chen RT; Marchesan S; Evans RA; Styan KE; Such GK; Postma A; McLean KM; Muir BW; Caruso F
    Biomacromolecules; 2012 Mar; 13(3):889-95. PubMed ID: 22332589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper on responsive polymer microgels: a recyclable catalyst exhibiting tunable catalytic activity.
    Wu Q; Cheng H; Chang A; Bai X; Lu F; Wu W
    Chem Commun (Camb); 2014 Nov; 50(91):14217-20. PubMed ID: 25283806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproducible Dendronized PEG Hydrogels via SPAAC Cross-Linking.
    Hodgson SM; McNelles SA; Abdullahu L; Marozas IA; Anseth KS; Adronov A
    Biomacromolecules; 2017 Dec; 18(12):4054-4059. PubMed ID: 28968079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of copper-catalyzed azide-alkyne cycloaddition for increased in vivo efficacy of interferon β-1b by site-specific PEGylation.
    Nairn NW; Shanebeck KD; Wang A; Graddis TJ; VanBrunt MP; Thornton KC; Grabstein K
    Bioconjug Chem; 2012 Oct; 23(10):2087-97. PubMed ID: 22988919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpenetrating network hydrogels via simultaneous "click chemistry" and atom transfer radical polymerization.
    Xu LQ; Yao F; Fu GD; Kang ET
    Biomacromolecules; 2010 Jul; 11(7):1810-7. PubMed ID: 20518556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress-responsive polymers containing cyclobutane core mechanophores: reactivity and mechanistic insights.
    Kean ZS; Niu Z; Hewage GB; Rheingold AL; Craig SL
    J Am Chem Soc; 2013 Sep; 135(36):13598-604. PubMed ID: 23941619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile and selective synthesis of "click chemistry" compatible heterobifunctional poly(ethylene glycol)s possessing azide and alkyne functionalities.
    Hiki S; Kataoka K
    Bioconjug Chem; 2010 Feb; 21(2):248-54. PubMed ID: 20078027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Event Spectroscopy and Unravelling Kinetics of Covalent Domains Based on Cyclobutane Mechanophores.
    Bowser BH; Wang S; Kouznetsova TB; Beech HK; Olsen BD; Rubinstein M; Craig SL
    J Am Chem Soc; 2021 Apr; 143(13):5269-5276. PubMed ID: 33783187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile mechanochemical cycloreversion of polymer cross-linkers enhances tear resistance.
    Wang S; Hu Y; Kouznetsova TB; Sapir L; Chen D; Herzog-Arbeitman A; Johnson JA; Rubinstein M; Craig SL
    Science; 2023 Jun; 380(6651):1248-1252. PubMed ID: 37347867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force Transduction Through Distant Force-Bearing Regioisomeric Linkages Affects the Mechanochemical Reactivity of Cyclobutane.
    Flear EJ; Horst M; Yang J; Xia Y
    Angew Chem Int Ed Engl; 2024 Aug; 63(33):e202406103. PubMed ID: 38818671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.