These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33651941)

  • 1. Accelerated Discovery of Zeolite Structures with Superior Mechanical Properties via Active Learning.
    Kim N; Min K
    J Phys Chem Lett; 2021 Mar; 12(9):2334-2339. PubMed ID: 33651941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal machine learning feature selection for assessing the mechanical properties of a zeolite framework.
    Kim N; Min K
    Phys Chem Chem Phys; 2022 Nov; 24(44):27031-27037. PubMed ID: 36189494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Searching for Mechanically Superior Solid-State Electrolytes in Li-Ion Batteries
    Choi E; Jo J; Kim W; Min K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42590-42597. PubMed ID: 34472845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening out unfeasible hypothetical zeolite structures via the closest non-adjacent OO pairs.
    Lu J; Li L; Cao H; Li Y; Yu J
    Phys Chem Chem Phys; 2017 Jan; 19(2):1276-1280. PubMed ID: 27966689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Applied to Zeolite Synthesis: The Missing Link for Realizing High-Throughput Discovery.
    Moliner M; Román-Leshkov Y; Corma A
    Acc Chem Res; 2019 Oct; 52(10):2971-2980. PubMed ID: 31553162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Approach for Clustering Zeolite Crystal Structures.
    Lach-Hab M; Yang S; Vaisman II; Blaisten-Barojas E
    Mol Inform; 2010 Apr; 29(4):297-301. PubMed ID: 27463057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A zeolite family with expanding structural complexity and embedded isoreticular structures.
    Guo P; Shin J; Greenaway AG; Min JG; Su J; Choi HJ; Liu L; Cox PA; Hong SB; Wright PA; Zou X
    Nature; 2015 Aug; 524(7563):74-8. PubMed ID: 26176918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides.
    Paolucci C; Di Iorio JR; Schneider WF; Gounder R
    Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Directed Search for Ultraincompressible, Superhard Materials.
    Mansouri Tehrani A; Oliynyk AO; Parry M; Rizvi Z; Couper S; Lin F; Miyagi L; Sparks TD; Brgoch J
    J Am Chem Soc; 2018 Aug; 140(31):9844-9853. PubMed ID: 30010335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational characterization of zeolite porous networks: an automated approach.
    First EL; Gounaris CE; Wei J; Floudas CA
    Phys Chem Chem Phys; 2011 Oct; 13(38):17339-58. PubMed ID: 21881655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of sodalite zeolite infiltration on the coefficient of thermal expansion and bond strength of all-ceramic dental prostheses.
    Naji GA; Omar RA; Yahya R
    J Mech Behav Biomed Mater; 2017 Mar; 67():135-143. PubMed ID: 28006713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rediscovery of the Importance of Inorganic Synthesis Parameters in the Search for New Zeolites.
    Shin J; Jo D; Hong SB
    Acc Chem Res; 2019 May; 52(5):1419-1427. PubMed ID: 31013053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quick and repeatable shear modulus measurement based on torsional resonance using a piezoelectric torsional transducer.
    Xie M; Huan Q; Li F
    Ultrasonics; 2020 Apr; 103():106101. PubMed ID: 32044568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of 13X from Waste Quartz and Photocatalytic Reaction of Methyl Orange on TiO2/ZSM-5, 13X and Y-Zeolite.
    Wang JJ; Jing YH; Ouyang T; Chang CT
    J Nanosci Nanotechnol; 2015 Aug; 15(8):6141-9. PubMed ID: 26369215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes.
    Ahmad Z; Xie T; Maheshwari C; Grossman JC; Viswanathan V
    ACS Cent Sci; 2018 Aug; 4(8):996-1006. PubMed ID: 30159396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data science assisted investigation of catalytically active copper hydrate in zeolites for direct oxidation of methane to methanol using H
    Ohyama J; Hirayama A; Kondou N; Yoshida H; Machida M; Nishimura S; Hirai K; Miyazato I; Takahashi K
    Sci Rep; 2021 Jan; 11(1):2067. PubMed ID: 33483547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of water in the elastic properties of aluminosilicate zeolites: DFT investigation.
    Bryukhanov IA; Rybakov AA; Larin AV; Trubnikov DN; Vercauteren DP
    J Mol Model; 2017 Mar; 23(3):68. PubMed ID: 28197839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selecting strong Brønsted acid zeolites through screening from a database of hypothetical frameworks.
    Matsuoka T; Baumes L; Katada N; Chatterjee A; Sastre G
    Phys Chem Chem Phys; 2017 Jun; 19(22):14702-14707. PubMed ID: 28540371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan.
    Mahmodi G; Zarrintaj P; Taghizadeh A; Taghizadeh M; Manouchehri S; Dangwal S; Ronte A; Ganjali MR; Ramsey JD; Kim SJ; Saeb MR
    Carbohydr Res; 2020 Mar; 489():107930. PubMed ID: 32044533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexibility mechanisms in ideal zeolite frameworks.
    Treacy MM; Dawson CJ; Kapko V; Rivin I
    Philos Trans A Math Phys Eng Sci; 2014 Feb; 372(2008):20120036. PubMed ID: 24379426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.