These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 33652049)
1. Monitoring fibrillation in the mechanical production of lignocellulosic micro/nanofibers from bleached spruce thermomechanical pulp. Serra-Parareda F; Tarrés Q; Pèlach MÀ; Mutjé P; Balea A; Monte MC; Negro C; Delgado-Aguilar M Int J Biol Macromol; 2021 May; 178():354-362. PubMed ID: 33652049 [TBL] [Abstract][Full Text] [Related]
2. Lignocellulosic micro/nanofibers from wood sawdust applied to recycled fibers for the production of paper bags. Tarrés Q; Pellicer N; Balea A; Merayo N; Negro C; Blanco A; Delgado-Aguilar M; Mutjé P Int J Biol Macromol; 2017 Dec; 105(Pt 1):664-670. PubMed ID: 28735007 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding. Tarrés Q; Oliver-Ortega H; Boufi S; Àngels Pèlach M; Delgado-Aguilar M; Mutjé P Int J Biol Macromol; 2020 Feb; 145():1199-1207. PubMed ID: 31726148 [TBL] [Abstract][Full Text] [Related]
4. Effects of fibrillation on the wood fibers' enzymatic hydrolysis enhanced by mechanical refining. Liu W; Wang B; Hou Q; Chen W; Wu M Bioresour Technol; 2016 Apr; 206():99-103. PubMed ID: 26851576 [TBL] [Abstract][Full Text] [Related]
5. Correlation between rheological measurements and morphological features of lignocellulosic micro/nanofibers from different softwood sources. Serra-Parareda F; Tarrés Q; Mutjé P; Balea A; Campano C; Sánchez-Salvador JL; Negro C; Delgado-Aguilar M Int J Biol Macromol; 2021 Sep; 187():789-799. PubMed ID: 34352317 [TBL] [Abstract][Full Text] [Related]
6. Fiber fractionation to understand the effect of mechanical refining on fiber structure and resulting enzymatic digestibility of biomass. Corbett DB; Knoll C; Venditti R; Jameel H; Park S Biotechnol Bioeng; 2020 Apr; 117(4):924-932. PubMed ID: 31885079 [TBL] [Abstract][Full Text] [Related]
7. Highly Transparent Nanocomposites Based on Poly(vinyl alcohol) and Sulfated UV-Absorbing Wood Nanofibers. Sirviö JA; Visanko M Biomacromolecules; 2019 Jun; 20(6):2413-2420. PubMed ID: 31030511 [TBL] [Abstract][Full Text] [Related]
8. Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers. Ehman NV; Lourenço AF; McDonagh BH; Vallejos ME; Felissia FE; Ferreira PJT; Chinga-Carrasco G; Area MC Int J Biol Macromol; 2020 Jan; 143():453-461. PubMed ID: 31778692 [TBL] [Abstract][Full Text] [Related]
10. Nanofibrillation of wood pulp using a high-speed blender. Uetani K; Yano H Biomacromolecules; 2011 Feb; 12(2):348-53. PubMed ID: 21190378 [TBL] [Abstract][Full Text] [Related]
11. Lignocellulosic nanofibers from triticale straw: The influence of hemicelluloses and lignin in their production and properties. Tarrés Q; Ehman NV; Vallejos ME; Area MC; Delgado-Aguilar M; Mutjé P Carbohydr Polym; 2017 May; 163():20-27. PubMed ID: 28267498 [TBL] [Abstract][Full Text] [Related]
12. Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications. Bakkari ME; Bindiganavile V; Goncalves J; Boluk Y Carbohydr Polym; 2019 Jan; 203():238-245. PubMed ID: 30318209 [TBL] [Abstract][Full Text] [Related]
13. Dissolution of Wood Pulp in Aqueous NaOH/Urea Solution via Dilute Acid Pretreatment. Shi Z; Yang Q; Kuga S; Matsumoto Y J Agric Food Chem; 2015 Jul; 63(27):6113-9. PubMed ID: 26101792 [TBL] [Abstract][Full Text] [Related]
14. On the Path to a New Generation of Cement-Based Composites through the Use of Lignocellulosic Micro/Nanofibers. Reixach R; Claramunt J; Chamorro MÀ; Llorens J; Pareta MM; Tarrés Q; Mutjé P; Delgado-Aguilar M Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096559 [TBL] [Abstract][Full Text] [Related]
15. Producing nanofibres from carrots with a chemical-free process. Varanasi S; Henzel L; Sharman S; Batchelor W; Garnier G Carbohydr Polym; 2018 Mar; 184():307-314. PubMed ID: 29352924 [TBL] [Abstract][Full Text] [Related]
16. Bark derived submicron-sized and nano-sized cellulose fibers: From industrial waste to high performance materials. Nair SS; Yan N Carbohydr Polym; 2015 Dec; 134():258-66. PubMed ID: 26428123 [TBL] [Abstract][Full Text] [Related]
17. Are Cellulose Nanofibers a Solution for a More Circular Economy of Paper Products? Delgado-Aguilar M; Tarrés Q; Pèlach MÀ; Mutjé P; Fullana-I-Palmer P Environ Sci Technol; 2015 Oct; 49(20):12206-13. PubMed ID: 26425934 [TBL] [Abstract][Full Text] [Related]
18. Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water. Sirviö JA; Visanko M J Hazard Mater; 2020 Feb; 383():121174. PubMed ID: 31522065 [TBL] [Abstract][Full Text] [Related]
19. 3 nm Thick Lignocellulose Nanofibers Obtained from Esterified Wood with Maleic Anhydride. Iwamoto S; Endo T ACS Macro Lett; 2015 Jan; 4(1):80-83. PubMed ID: 35596377 [TBL] [Abstract][Full Text] [Related]
20. Micro- and nanofibrillated cellulose from virgin and recycled fibers: A comparative study of its effects on the properties of hygiene tissue paper. Zambrano F; Wang Y; Zwilling JD; Venditti R; Jameel H; Rojas O; Gonzalez R Carbohydr Polym; 2021 Feb; 254():117430. PubMed ID: 33357905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]