BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33652193)

  • 1. Detection of acacia honey adulteration with high fructose corn syrup through determination of targeted α‑Dicarbonyl compound using ion mobility-mass spectrometry coupled with UHPLC-MS/MS.
    Yan S; Song M; Wang K; Fang X; Peng W; Wu L; Xue X
    Food Chem; 2021 Aug; 352():129312. PubMed ID: 33652193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup.
    Gensberger S; Mittelmaier S; Glomb MA; Pischetsrieder M
    Anal Bioanal Chem; 2012 Jul; 403(10):2923-31. PubMed ID: 22382856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of sugar degradation products with α-dicarbonyl structure in carbonated soft drinks by UHPLC-DAD-MS/MS.
    Gensberger S; Glomb MA; Pischetsrieder M
    J Agric Food Chem; 2013 Oct; 61(43):10238-45. PubMed ID: 23452313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy.
    Li S; Zhang X; Shan Y; Su D; Ma Q; Wen R; Li J
    Food Chem; 2017 Mar; 218():231-236. PubMed ID: 27719903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Differences of α-Dicarbonyl Compounds between Naturally Matured and Artificially Heated Acacia Honey: Their Application to Determine Honey Quality.
    Yan S; Sun M; Zhao L; Wang K; Fang X; Wu L; Xue X
    J Agric Food Chem; 2019 Nov; 67(46):12885-12894. PubMed ID: 31675227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.
    Kocadağlı T; Gökmen V
    Food Chem; 2016 Nov; 211():892-902. PubMed ID: 27283710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Monitoring of Multiclass Syrup Adulterants in Honey Based on the Oligosaccharide and Polysaccharide Profiles by MALDI Mass Spectrometry.
    Qu L; Jiang Y; Huang X; Cui M; Ning F; Liu T; Gao Y; Wu D; Nie Z; Luo L
    J Agric Food Chem; 2019 Oct; 67(40):11256-11261. PubMed ID: 31545583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of acacia honey treated with macroporous adsorption resins using HPLC-ECD and chemometrics.
    Wang Q; Zhao H; Xue X; Liu C; He L; Cheng N; Cao W
    Food Chem; 2020 Mar; 309():125656. PubMed ID: 31699558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Untargeted headspace gas chromatography - Ion mobility spectrometry analysis for detection of adulterated honey.
    Arroyo-Manzanares N; García-Nicolás M; Castell A; Campillo N; Viñas P; López-García I; Hernández-Córdoba M
    Talanta; 2019 Dec; 205():120123. PubMed ID: 31450393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of coffee adulteration with soybean and corn by capillary electrophoresis-tandem mass spectrometry.
    Daniel D; Lopes FS; Santos VBD; do Lago CL
    Food Chem; 2018 Mar; 243():305-310. PubMed ID: 29146342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Screening Method Based on Headspace-Ion Mobility Spectrometry to Identify Adulterated Honey.
    Aliaño-González MJ; Ferreiro-González M; Espada-Bellido E; Palma M; Barbero GF
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unravelling caramelization and Maillard reactions in glucose and glucose + leucine model cakes: Formation and degradation kinetics of precursors, α-dicarbonyl intermediates and furanic compounds during baking.
    Lee J; Roux S; Le Roux E; Keller S; Rega B; Bonazzi C
    Food Chem; 2021 Dec; 376():131917. PubMed ID: 34968913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylglyoxal is associated with bacteriostatic activity of high fructose agave syrups.
    Corrales Escobosa AR; Gomez Ojeda A; Wrobel K; Magana AA; Wrobel K
    Food Chem; 2014 Dec; 165():444-50. PubMed ID: 25038697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid discrimination of raw and sulfur-fumigated Smilax glabra based on chemical profiles by UHPLC-QTOF-MS/MS coupled with multivariate statistical analysis.
    He L; Zhang Z; Liu Y; Chen D; Yuan M; Dong G; Luo P; Yan Z
    Food Res Int; 2018 Jun; 108():226-236. PubMed ID: 29735052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Screening of Multiclass Syrup Adulterants in Honey by Ultrahigh-Performance Liquid Chromatography/Quadrupole Time of Flight Mass Spectrometry.
    Du B; Wu L; Xue X; Chen L; Li Y; Zhao J; Cao W
    J Agric Food Chem; 2015 Jul; 63(29):6614-23. PubMed ID: 26151590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new methodology based on GC-MS to detect honey adulteration with commercial syrups.
    Ruiz-Matute AI; Soria AC; Martínez-Castro I; Sanz ML
    J Agric Food Chem; 2007 Sep; 55(18):7264-9. PubMed ID: 17676863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NIR detection of honey adulteration reveals differences in water spectral pattern.
    Bázár G; Romvári R; Szabó A; Somogyi T; Éles V; Tsenkova R
    Food Chem; 2016 Mar; 194():873-80. PubMed ID: 26471630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling of alpha-dicarbonyl content of commercial honeys from different botanical origins: identification of 3,4-dideoxyglucoson-3-ene (3,4-DGE) and related compounds.
    Marceau E; Yaylayan VA
    J Agric Food Chem; 2009 Nov; 57(22):10837-44. PubMed ID: 19874027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the presence of natural monosaccharides in the quantification of α-dicarbonyl compounds in high content sugar samples. A comparative study by ultra-high performance liquid chromatography-single quadrupole mass spectrometry using different derivatization reactions.
    Hurtado-Sánchez MDC; Espinosa-Mansilla A; Durán-Merás I
    J Chromatogr A; 2015 Nov; 1422():117-127. PubMed ID: 26489730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of adulteration versus storage on volatiles in unifloral honeys from different floral sources and locations.
    Agila A; Barringer S
    J Food Sci; 2013 Feb; 78(2):C184-91. PubMed ID: 23330585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.