These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33652236)

  • 21. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.
    Sing SL; An J; Yeong WY; Wiria FE
    J Orthop Res; 2016 Mar; 34(3):369-85. PubMed ID: 26488900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D laser-printed porous Ti
    Chang Tu C; Tsai PI; Chen SY; Kuo MY; Sun JS; Chang JZ
    J Formos Med Assoc; 2020 Jan; 119(1 Pt 3):420-429. PubMed ID: 31387841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties.
    Bartolomeu F; Dourado N; Pereira F; Alves N; Miranda G; Silva FS
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110342. PubMed ID: 31761155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure.
    Xu Y; Zhang D; Hu S; Chen R; Gu Y; Kong X; Tao J; Jiang Y
    J Mech Behav Biomed Mater; 2019 Nov; 99():225-239. PubMed ID: 31400657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting.
    Kelly CN; Evans NT; Irvin CW; Chapman SC; Gall K; Safranski DL
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():726-736. PubMed ID: 30813077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design, modeling and 3D printing of a personalized cervix tissue implant with protein release function.
    Zhao C; Wang Z; Hua C; Ji J; Zhou Z; Fang Y; Weng D; Lu L; Pang Y; Sun W
    Biomed Mater; 2020 Jun; 15(4):045005. PubMed ID: 32109897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic topology optimization of 3D-Printed transtibial orthopedic implant using tunable isotropic porous metamaterials.
    García-Ávila J; González-Gallegos CP; Segura-Ibarra V; Vazquez E; Garcia-Lopez E; Rodríguez CA; Vargas-Martínez A; Cuan-Urquizo E; Ramírez-Cedillo E
    J Mech Behav Biomed Mater; 2024 May; 153():106479. PubMed ID: 38492502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational design and fabrication of a novel bioresorbable cage for tibial tuberosity advancement application.
    Castilho M; Rodrigues J; Vorndran E; Gbureck U; Quental C; Folgado J; Fernandes PR
    J Mech Behav Biomed Mater; 2017 Jan; 65():344-355. PubMed ID: 27631172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D metal printing in dentistry: An in vitro biomechanical comparative study of two additive manufacturing technologies for full-arch implant-supported prostheses.
    Barbin T; Velôso DV; Del Rio Silva L; Borges GA; Presotto AGC; Barão VAR; Mesquita MF
    J Mech Behav Biomed Mater; 2020 Aug; 108():103821. PubMed ID: 32469723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement.
    Castilho M; Dias M; Vorndran E; Gbureck U; Fernandes P; Pires I; Gouveia B; Armés H; Pires E; Rodrigues J
    Biofabrication; 2014 Jun; 6(2):025005. PubMed ID: 24658159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Digital modeling for the individual mandibular 3D mesh scaffold based on 3D printing technology].
    Yan R; Luo D; Qin X; Li R; Rong Q; Hu M
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 May; 51(5):280-5. PubMed ID: 27220387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants.
    Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W
    Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: fabrication, biocompatibility analysis and photoelastic study.
    Yang F; Chen C; Zhou Q; Gong Y; Li R; Li C; Klämpfl F; Freund S; Wu X; Sun Y; Li X; Schmidt M; Ma D; Yu Y
    Sci Rep; 2017 Mar; 7():45360. PubMed ID: 28350007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials.
    Xiao D; Yang Y; Su X; Wang D; Sun J
    Biomed Mater Eng; 2013; 23(5):433-45. PubMed ID: 23988713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advancing of Additive-Manufactured Titanium Implants with Bioinspired Micro- to Nanotopographies.
    Maher S; Wijenayaka AR; Lima-Marques L; Yang D; Atkins GJ; Losic D
    ACS Biomater Sci Eng; 2021 Feb; 7(2):441-450. PubMed ID: 33492936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical and shape memory properties of porous Ni
    Taheri Andani M; Saedi S; Turabi AS; Karamooz MR; Haberland C; Karaca HE; Elahinia M
    J Mech Behav Biomed Mater; 2017 Apr; 68():224-231. PubMed ID: 28189977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting.
    Habijan T; Haberland C; Meier H; Frenzel J; Wittsiepe J; Wuwer C; Greulich C; Schildhauer TA; Köller M
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):419-26. PubMed ID: 25428090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting.
    Yan C; Hao L; Hussein A; Young P
    J Mech Behav Biomed Mater; 2015 Nov; 51():61-73. PubMed ID: 26210549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling three-dimensional-printed trabecular metal structures with a homogenization approach: Application to hemipelvis reconstruction.
    Barbera L; Trabace M; Pennati G; Rodríguez Matas JF
    Int J Artif Organs; 2019 Oct; 42(10):575-585. PubMed ID: 31122108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.