These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Immiscible poly(lactic acid)/poly(ε-caprolactone) for temporary implants: Compatibility and cytotoxicity. Finotti PF; Costa LC; Capote TS; Scarel-Caminaga RM; Chinelatto MA J Mech Behav Biomed Mater; 2017 Apr; 68():155-162. PubMed ID: 28171812 [TBL] [Abstract][Full Text] [Related]
3. Melt Crystallization Behavior and Crystalline Morphology of Polylactide/Poly(ε-caprolactone) Blends Compatibilized by Lactide-Caprolactone Copolymer. Zhang C; Lan Q; Zhai T; Nie S; Luo J; Yan W Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961106 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230 [TBL] [Abstract][Full Text] [Related]
5. Selective localization of multiwalled carbon nanotubes in poly(epsilon-caprolactone)/polylactide blend. Wu D; Zhang Y; Zhang M; Yu W Biomacromolecules; 2009 Feb; 10(2):417-24. PubMed ID: 19140730 [TBL] [Abstract][Full Text] [Related]
6. Biodegradation of poly(epsilon-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Singh RP; Pandey JK; Rutot D; Degée P; Dubois P Carbohydr Res; 2003 Aug; 338(17):1759-69. PubMed ID: 12892943 [TBL] [Abstract][Full Text] [Related]
7. Poly(ε-Caprolactone)/Poly(Lactic Acid) Blends Compatibilized by Peroxide Initiators: Comparison of Two Strategies. Przybysz-Romatowska M; Haponiuk J; Formela K Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31963365 [TBL] [Abstract][Full Text] [Related]
8. Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo AM; McCarthy AD; Cortizo MS J Biomater Sci Polym Ed; 2010; 21(10):1297-312. PubMed ID: 20534186 [TBL] [Abstract][Full Text] [Related]
9. Long term efficacy and fate of a right ventricular outflow tract replacement using an elastomeric cardiac patch consisting of caprolactone and D,L-lactide copolymers. Fujimoto KL; Yamawaki-Ogata A; Uto K; Usui A; Narita Y; Ebara M Acta Biomater; 2021 Mar; 123():222-229. PubMed ID: 33476828 [TBL] [Abstract][Full Text] [Related]
10. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends. Zhao H; Zhao G J Mech Behav Biomed Mater; 2016 Jan; 53():59-67. PubMed ID: 26313249 [TBL] [Abstract][Full Text] [Related]
11. Poly(epsilon-caprolactone)/chitin and poly(epsilon-caprolactone)/chitosan blend films with compositional gradients: fabrication and their biodegradability. Honma T; Zhao L; Asakawa N; Inoue Y Macromol Biosci; 2006 Mar; 6(3):241-9. PubMed ID: 16534761 [TBL] [Abstract][Full Text] [Related]
12. Compatibilization effect of poly(epsilon-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(epsilon-caprolactone) blends. Na YH; He Y; Shuai X; Kikkawa Y; Doi Y; Inoue Y Biomacromolecules; 2002; 3(6):1179-86. PubMed ID: 12425654 [TBL] [Abstract][Full Text] [Related]
13. Effect of diameter of poly(lactic acid) fiber on the physical properties of poly(ɛ-caprolactone). Ju D; Han L; Guo Z; Bian J; Li F; Chen S; Dong L Int J Biol Macromol; 2015 May; 76():49-57. PubMed ID: 25709010 [TBL] [Abstract][Full Text] [Related]
14. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Schnell E; Klinkhammer K; Balzer S; Brook G; Klee D; Dalton P; Mey J Biomaterials; 2007 Jul; 28(19):3012-25. PubMed ID: 17408736 [TBL] [Abstract][Full Text] [Related]
15. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Garcia-Campo MJ; Quiles-Carrillo L; Masia J; Reig-Pérez MJ; Montanes N; Balart R Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29165359 [TBL] [Abstract][Full Text] [Related]
16. Poly(ε-caprolactone)-Based Graft Copolymers: Synthesis Methods and Applications in the Biomedical Field: A Review. Coudane J; Nottelet B; Mouton J; Garric X; Van Den Berghe H Molecules; 2022 Oct; 27(21):. PubMed ID: 36364164 [TBL] [Abstract][Full Text] [Related]
17. Morphology, Thermo-Mechanical Properties and Biodegradibility of PCL/PLA Blends Reactively Compatibilized by Different Organic Peroxides. Przybysz-Romatowska M; Barczewski M; Mania S; Tercjak A; Haponiuk J; Formela K Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361398 [TBL] [Abstract][Full Text] [Related]
18. Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability. Zhu B; Bai T; Wang P; Wang Y; Liu C; Shen C Int J Biol Macromol; 2020 Jun; 153():1272-1280. PubMed ID: 31758994 [TBL] [Abstract][Full Text] [Related]
19. Quantitative Analysis of Morphology and Surface Properties of Poly(lactic acid)/Poly(ε-caprolactone)/Hydrophilic Nano-Silica Blends. Mahović Poljaček S; Priselac D; Tomašegović T; Leskovac M; Šoster A; Stanković Elesini U Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932088 [TBL] [Abstract][Full Text] [Related]
20. High performance poly(lactic acid)/poly(ether-block-amide) blend-based bionanocomposites containing carbon nanotubes and/or organoclay. Behera K; Mishra B; Yadav M; Chang YH; Chiu FC Int J Biol Macromol; 2024 Nov; 279(Pt 1):135122. PubMed ID: 39208891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]