These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33652580)

  • 1. Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides.
    Kusumkar VV; Galamboš M; Viglašová E; Daňo M; Šmelková J
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in high-performance environmental impacts of the removal of radionuclides from wastewater based on metal-organic frameworks: a review.
    Sheta SM; Hamouda MA; Ali OI; Kandil AT; Sheha RR; El-Sheikh SM
    RSC Adv; 2023 Aug; 13(36):25182-25208. PubMed ID: 37622006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution.
    Lazar MM; Ghiorghita CA; Dragan ES; Humelnicu D; Dinu MV
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined use of tannic acid-type organic composite adsorbents and ozone for simultaneous removal of various kinds of radionuclides in river water.
    Tachibana Y; Kalak T; Nogami M; Tanaka M
    Water Res; 2020 Sep; 182():116032. PubMed ID: 32574820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Magnetic ion imprinting techniques for the separation and analysis of elemental speciation].
    Pan Y; Zhang F; Gao W; Sun Y; Zhang S; Lian H; Mao L
    Se Pu; 2022 Nov; 40(11):979-987. PubMed ID: 36351806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives.
    Patra K; Ansari SA; Mohapatra PK
    J Chromatogr A; 2021 Oct; 1655():462491. PubMed ID: 34482010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radioactive waste treatments by using zeolites. A short review.
    Jiménez-Reyes M; Almazán-Sánchez PT; Solache-Ríos M
    J Environ Radioact; 2021 Jul; 233():106610. PubMed ID: 33839541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New ion-imprinted polymer for selective removal of Cu
    Sharef HY; Jalal AF; Ibrahim BM; Fakhre NA; Qader IN
    Int J Biol Macromol; 2023 Jun; 239():124318. PubMed ID: 37015282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ion-imprinted imidazole-functionalized ordered mesoporous silica for selective removal of chromium(VI) from electroplating effluents.
    Cen S; Yang L; Li R; Gong S; Tan J; Zeng L
    Environ Sci Pollut Res Int; 2022 Jul; 29(31):47516-47526. PubMed ID: 35182346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of nano-sized stannic silicomolybdate for the removal of
    Abdel-Galil EA; Hassan RS; Eid MA
    Appl Radiat Isot; 2019 Jun; 148():91-101. PubMed ID: 30925369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective solid-phase extraction of trace thorium(IV) using surface-grafted Th(IV)-imprinted polymers with pyrazole derivative.
    Lin C; Wang H; Wang Y; Cheng Z
    Talanta; 2010 Apr; 81(1-2):30-6. PubMed ID: 20188883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of radionuclide
    Wang J; Xu B
    J Environ Radioact; 2023 Dec; 270():107267. PubMed ID: 37598575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization and removal of Cd(II) using Cd(II)-ion imprinted polymer.
    Singh DK; Mishra S
    J Hazard Mater; 2009 May; 164(2-3):1547-51. PubMed ID: 19027231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: A review.
    Gendy EA; Oyekunle DT; Ali J; Ifthikar J; El-Motaleb Mosad Ramadan A; Chen Z
    J Environ Radioact; 2021 Nov; 238-239():106710. PubMed ID: 34481100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel(II) ions.
    Du X; Zhang H; Hao X; Guan G; Abudula A
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9543-9. PubMed ID: 24836301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Adsorption of Gd(3+) on a Magnetically Retrievable Imprinted Chitosan/Carbon Nanotube Composite with High Capacity.
    Li K; Gao Q; Yadavalli G; Shen X; Lei H; Han B; Xia K; Zhou C
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21047-55. PubMed ID: 26355685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Co-Adsorption and Highly Selective Separation of Cs
    Sun HY; Hu B; Lv TT; Guo YL; Yao YX; Yang L; Feng ML; Huang XY
    Small; 2023 Jun; 19(24):e2208212. PubMed ID: 36916691
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of ternary polymer composites of macroporous adsorbents on adsorption properties for heavy metal removal from aqueous solution.
    Charoenchai M; Tangbunsuk S
    Environ Sci Pollut Res Int; 2022 Nov; 29(55):84006-84018. PubMed ID: 35776300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer.
    Niu X; Elakneswaran Y; Islam CR; Provis JL; Sato T
    J Hazard Mater; 2022 May; 429():128373. PubMed ID: 35121289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino-functionalized adsorbent prepared by means of Cu(II) imprinted method and its selective removal of copper from aqueous solutions.
    Peng W; Xie Z; Cheng G; Shi L; Zhang Y
    J Hazard Mater; 2015 Aug; 294():9-16. PubMed ID: 25827392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.